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Abstract—The digital transformation of power system 

introduces False Data Injection Attacks (FDIAs) on voltage 

stability that compromises the operational integrity of 

power grids. Existing detection mechanisms for FDIAs often 

fall short as they overlook the complexities of cyberattacks 

targeting voltage stability and rely on outdated models that 

do not capture the dynamic interplay between power system 

operations and potential threats. In response to these gaps, 

this paper proposes a novel FDIA detection method 

designed specifically for voltage regulation vulnerabilities, 

aiming to enhance the voltage stability index. The proposed 

method utilizes an unsupervised learning framework 

capable of identifying cyberattacks targeting voltage 

regulation. A bi-level optimization approach is put forward 

to concurrently optimize the objectives of both attackers 

and defenders in the context of voltage regulation. The 

effectiveness of this approach is validated through 

comprehensive training and testing on a variety of attack 

scenarios, demonstrating superior generalization across 

different conditions. Extensive simulations on the Iberian 

power system topology, with 486 buses, show that the 

proposed model achieves more than 93% detection rate. 

These results highlight the robustness and efficacy of the 

proposed strategy in strengthening the cyber resilience of 

power systems against sophisticated FDIA threats on 

voltage stability. 

Index Terms—cybersecurity, data falsification, false data 

injection attacks, graph autoencoder, voltage regulation, 

I. INTRODUCTION 

Modern power systems have become more advanced 

and efficient, but they often operate close to their stability 

limits with reduced security margins [1]. When these 

limits are exceeded, or the security margins are not 

maintained, the risk of large-scale blackouts increases 

significantly. Therefore, assessing the stability of power 

systems, particularly voltage stability, is crucial [2]. 

Voltage instability occurs when the system cannot 

maintain acceptable steady-state voltages across all buses 

under normal operations or after disturbances. This 

instability is primarily caused by factors such as system 

overloading, reactive power shortages, or equipment 

failures. A historical event in Egypt on April 24, 1990 [3] 

underscored the impact of voltage instability on power 

systems. 

Voltage-regulating equipments, such as capacitor 

banks, voltage regulators, on-load tap changers, static 

Volt-Ampere Reactive (VAR) compensators, and smart 

inverters, work together to ensure voltage stability by 

minimizing fluctuations and system oscillations. This is 

typically achieved by injecting reactive power into the 

system. However, a shortage of reactive power can lead 

to voltage drops which, in turn, triggers cascading 

failures. Regulating devices may disconnect generators to 

prevent overheating, causing further reductions in 

reactive power. This cycle can ultimately lead to a 

voltage collapse. With the modernization of grids, 

voltage-regulating devices are increasingly managed 

remotely through various communication technologies. 

While this automation enhances grid control, it also 

increases the vulnerability of voltage regulation networks 

to cyberattacks. In False Data Injection Attacks (FDIAs), 

malicious actors falsify the voltage readings by making 

them to seem high (additive attacks), low (deductive 

attacks), or a blend of the two (camouflage attacks), to 

compromise the voltage stability index. These attacks can 

introduce fluctuations in the voltage levels which, in turn, 

disrupt the voltage stability index. 

A. Related Works 

Previous attack detection strategies rely on the 

residuals between actual and measured data [4]. When 

these residuals exceed a certain threshold, they indicate 

the possible presence of bad data. Although these 

methods are widely used, it has been shown that FDIAs 

can bypass such detectors. 

To develop more robust FDIA detection strategies, 

recent methods have utilized the Kullback-Leibler (KL) 

distance [5] and a Bayesian framework [6]. However, 

these methods often struggle to detect FDIAs that share 
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the same distribution as historical measurements and are 

generally more effective at identifying attacks that result 

in abnormal system conditions. 

Recently, machine learning and deep learning-based 
methods for detecting FDIAs have gained significant 

attention due to their ability to learn inherent features 
from data. In this context, feed-forward neural network 
(FNN)-based FDIA detectors have been reported to 
achieve accuracy levels exceeding 90% [7, 8]. 

Esmalifalak et al. [9] introduced a detection scheme using 
a support vector machine (SVM), which achieved an F1 
score of 82%. To further enhance detection capabilities, 
the study in [10] introduced a variational autoencoder for 

anomaly detection in power grids. A comparative 
performance analysis in [11] showed that a deep belief 
network-based approach outperformed extreme learning 
machines and residual-based detectors. However, a 
limitation of these methods is their inability to fully 

capture the spatial relationships within sensor 
measurement data, as they often overlook the topological 
features of power grids [12]. 

Graph-based attack detection strategies offer a 

powerful solution to address the limitations of traditional 
deep learning models by effectively capturing both spatial 
and temporal features from graph-structured power 
system data [13]. For instance, a study in [14] showed a  
4% improvement in the F1 score over a standard GNN-

based detector. To detect unobservable attacks, an 
ARIMA-based model was introduced in [15], enabling 
better adaptation to sudden variations in the spectral 
domain. A modified multi-temporal graph Convolutional 

Neural Network (CNN) achieved 96% accuracy by 
integrating the training phases of graph convolutions and 
multilayer perceptions to represent node features [16]. In 
[17], a hybrid approach combining a graph CNN with a 

long-short time memory (LSTM) module also reached a 
96% detection rate. A Graph Autoencoder (GAE)-based 
model demonstrated its effectiveness on unseen 
topologies, with 12% improvement over shallow 
detectors [18]. Comparative studies [19] further indicated 

that autoencoders with attention mechanisms outperform 
simple and variational autoencoders in detecting FDIAs 
and enhancing system resilience to cyberattacks. Despite 
these advances, most graph-based detectors are trained 

and tested without considering the impact on voltage 
stability, which is frequently affected by FDIAs. 

A specialized FDIA detection algorithm for voltage 

stability is crucial due to the unique and complex 

challenges involved in maintaining voltage levels within 

power systems. FDIAs that target voltage measurements 

can cause small but critical deviations in data that 

traditional detectors may overlook. Even minor 

discrepancies in reactive power can accumulate, leading 

to misalignment between actual and perceived system 

states and potentially causing voltage collapse. This risk 

is heightened under stressed conditions, such as peak 

loads or post-fault scenarios, where the system’s margin 

for error is already minimal. A dedicated algorithm would 

continuously monitor the voltage stability index and 

provide early warnings to prevent the system from 

reaching critical instability. Therefore, given the specific 

vulnerabilities and high stakes associated with voltage 

stability, a dedicated FDIA detection approach is required. 

B. Contributions  

The key contributions of this paper are summarized as 

follows. 

 First, we introduce a GAE-based detector for 

cyberattacks on voltage regulation that captures both 

temporal and spatial relationships in power grid data 

using Chebyshev convolutional operations. 

 Second, the proposed model effectively detects 

FDIAs, even with unseen topologies, validating its 

generalization and practical applicability. 

 Third, we employ a bi-level optimization framework 

to craft cyberattacks with enhanced effectiveness and 

stealthiness and to create a more potent threat to the 

voltage regulation. 

 Fourth, to showcase the efficacy of the proposed 

detector, we undertake comprehensive simulations, 

subjecting it to a range of power system attacks 

including targeted scenarios on random and 

vulnerable buses. 

II. VOLTAGE STABILITY INDEX 

The voltage stability index is an indicator of power 

system health and operational reliability. This index is 

designed to reach a marginal value as the system reaches 

close to the instability point. To assess the stability of the 

overall system, we considered both the bus and line 

voltage stability indices [20] which will be discussed next. 

A. Bus Voltage Stability Index 

If Vb and Vi represent the voltage at bth generator bus 

and ith load bus, the matrix F can be represented in terms 

of the sub-matrices Yii and Yib. Ng is the number of 

generator bus. We express the bus voltage stability index 

at the ith bus, 𝛥𝐵
𝑖 , as:  

𝛥𝐵
𝑖 = |1 − ∑

𝑁𝑔

𝑏=1 𝐹𝑖,𝑏
𝑉𝑏

𝑉𝑖
|,                        (1) 

In the event of cyberattacks, the 𝛥𝐵
𝑖  index can be 

falsely altered at various buses. The manipulated 𝛥𝐵
𝑖  

index, denoted as 𝛥̃𝐵
𝑖  at the ith bus is expressed as 

𝛥̃𝐵
𝑖 = |1 − ∑

𝑁𝑔

𝑏=1 𝐹𝑖𝑏
𝑉𝑏

𝑉𝑖
|,                      (2) 

where 𝑉̃𝑖 indicates the false voltage measurement at bus 𝑖. 
Taking the average of 𝛥𝐵

𝑖  over all the buses gives the 

global bus voltage stability index for the whole system. 

B. Line Voltage Stability Index 

The bus voltages Vk and Vj at the ends of the line 

connecting buses 𝑖 and 𝑗 are related by  

𝑉𝑘 = √(𝑉𝑗 +
𝑃𝑘,𝑗𝑅+𝑄𝑘,𝑗𝑋𝑅

𝑉𝑗
)

2

+ (
𝑃𝑘,𝑗𝑋𝑅−𝑄𝑘,𝑗𝑅

𝑉𝑗
)

2

,        (3) 

where the active and reactive powers flowing from bus 𝑘 

to bus 𝑗 are denoted by 𝑃𝑘,𝑗  and 𝑄𝑘,𝑗 , respectively; R is 

the equivalent resistance and XR is the reactance of the 
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branch. The line voltage stability index 𝛥𝐿
𝑘,𝑗

 of the line 

connecting buses 𝑘 and 𝑗 is given by:  

𝛥𝐿
𝑘,𝑗

=
𝑉𝑘

√2𝑉𝑗
2+2(𝑃𝑘,𝑗𝑅+𝑄𝑘,𝑗𝑋𝑅)

,               (4) 

and satisfies this condition 0 < 𝛥𝐿
𝑘,𝑗

< 1 . When the

system is near its stability limit, the voltage stability 

index approaches 1. The overall voltage stability index, 

𝛥𝑜, is determined by taking the maximum value between

the line voltage index 𝛥𝐿 and bus voltage index 𝛥𝐵: 𝛥𝑜 =
max{𝛥𝐿 , 𝛥𝐵}.

III. BI-LEVEL OPTIMIZATION PROBLEM FORMULATION

In this section, we formulate a bi-level optimization 

problem for voltage stability in power systems involving 

an attacker and a defender, each with distinct objectives. 

The attacker aims to maximize disruption by destabilizing 

the system’s voltage, while the defender seeks to 

minimize this impact through security measures. If an 

attacker alters the voltage measurement at a bus, the 

voltage deviation is given by Δ𝐕𝑎 = [Δ𝑉𝑎
1, Δ𝑉𝑎

2,×××

, Δ𝑉𝑎
𝑁𝑙] . The defender counters by using load 

compensation devices to inject reactive power at load 

buses, denoted as 𝐪𝑑 = [𝑞𝑑
1 , 𝑞𝑑

2,×××, 𝑞𝑑
𝑁𝑙] . Here, 𝐪𝑑

represents the reactive power vector that the defender 

uses to mitigate the attack Δ𝐕𝑎. The utility function for

the attacker, 𝑈𝑎(Δ𝐕𝑎, 𝐪𝑑), is defined as:

𝑈𝑎(Δ𝐕𝑎, 𝐪𝑑) = ∑
𝑁𝑙
𝑖=1 𝑃𝑎(ℎ𝑖)𝛥𝑜

𝑖 ,     (5) 

where 𝑃𝑎(ℎ𝑖) is the probability of a successful attack at

load bus 𝑖, dependent on the binary variable ℎ𝑖 [21]. If the

attack on node 𝑖 succeeds, ℎ𝑖 = 1; otherwise, ℎ𝑖 = 0. The

defender’s utility function, 𝑈𝑑(Δ𝐕𝑎, 𝐪𝑑), is given by:

𝑈𝑑(Δ𝐕𝑎, 𝐪𝑑) = −𝑈𝑎(Δ𝐕𝑎, 𝐪𝑑)   (6) 

The bi-level optimization problem is formulated as 

follows: 

𝑔(Δ𝐕𝑎, 𝐪𝑑) = argmax
Δ𝐕𝑎

 𝑈𝑎(Δ𝐕𝑎, 𝐪𝑑)       (7) 

𝑓(Δ𝐕𝑎, 𝐪𝑑) = argmax
𝐪𝑑

 𝑈𝑑(𝑔(Δ𝐕𝑎, 𝐪𝑑), 𝐪𝑑)     (8)

Eq. (7) represents the attacker’s upper-level objective, 

aiming to maximize the disruption of the voltage stability 

index. Given the defender’s action 𝐪𝑑 , the attacker

identifies a strategy pair, 𝑔(Δ𝐕𝑎, 𝐪𝑑) . Equation (8)

defines the defender’s lower-level objective, which seeks 

to maximize compensation against the attacker’s actions. 

IV. GAE-BASED ATTACK DETECTION SCHEME

The features of GAE-based attack detection framework 

are next reviewed.  

A. Components of Graphs

An interconnected power system can be modeled as a

graph, which makes GAE-based methods suitable for 

understanding its complex dynamics. In this graph 

representation, power grid buses are nodes and their 

connections are edges. Power grids are typically modeled 

as undirected, interconnected weighted graphs [14, 22]. 

In this paper, we define the power system graph as 𝒢 =
(𝒩, ℰ, 𝐖), where 𝒩 represents the set of nodes (buses) 

and ℰ  represents the set of edges (physical lines 

interconnecting buses). The adjacency matrix 𝐖 ∈ ℝ𝑛×𝑛

models the weighted relationships between buses. If 

buses 𝑖 and 𝑗 are connected, the weight 𝐖𝑖,𝑗 is assigned to

edge 𝑒 = (𝑖, 𝑗). A graph representation of the considered 

power system is represented in Fig. 1. 

Fig 1. Graph representation of the Iberian power system. 

B. Unsupervised Learning Objective

The goal is to identify deviations in input samples 𝐗,

indicating the presence of cyberattacks in power systems. 

The input samples consist of temporal measurements of 

active and reactive power, [𝐏𝑡 , 𝐐𝑡] ∈ ℝ𝑛×2  at the t th

timestamp. As shown in Fig. 2, the input data passes 

through graph encoder layers lE, which produce a latent 

representation at layer lH, followed by graph decoder 

layers lD. The graph encoder and decoder functions are 

𝐸𝒢 = 𝑓𝐸(𝐗) and 𝐷𝒢 = 𝑓𝐷(𝐗), respectively. The objective

is to minimize the reconstruction error between the 

original input and its reconstruction: 

min
{𝜇}

𝒞(𝐗, 𝑓𝐷(𝑓𝐸(𝐗))),  (9) 

where {𝜇} represents the training parameters, and the cost 

function 𝒞(⋅)  is the mean squared error measuring the 

difference between 𝑓𝐷(𝑓𝐸(𝐗)) and X.

Fig. 2. Architecture of the proposed GAE. 
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C. Chebyshev Convolution Operation    

During each training stage, the spectral graph 

convolution of a signal 𝛔 ∈ 𝐗  is defined as 𝐔𝛙𝜃𝐔𝑇𝛔 , 

where 𝐔  contains the eigenvectors of the normalized 

Laplacian 𝐋 = 𝐔𝛀𝐔𝑇 , 𝛙𝜃 = diagonal(𝜃) is the spectral 

filter, and 𝜃 ∈ ℝ𝑛 is the parameter vector in the Fourier 

domain. The diagonal matrix 𝛀 holds the non-negative 

eigenvalues 𝜆  of L, and 𝐔𝑇𝛔  represents the Fourier 

transform of 𝛔 . Later a polynomial approximation is 

introduced as, 𝐻𝛄(𝛀) = ∑𝑚
𝑘=0 𝛾𝑘𝛺𝑘, where 𝛄 = (𝛾1, 𝛾2,×

××, 𝛾𝑚) are the coefficients for an m-order polynomial. 

To enhance training stability, a truncated Chebyshev 

polynomial expansion 𝑁𝑚(𝛀̃) is applied [23]:  

𝐻𝛄(𝛀) = ∑𝑚
𝑘=0 𝛾𝑘𝑁𝑘(𝛀̃),                   (10) 

where 𝛀̃ = 2𝛀/𝜆 − 𝐈 . The Chebyshev polynomials are 

recursively defined as 𝑁𝑚(𝑝) = 2𝑝𝑁𝑚−1(𝑝) − 𝑁𝑚−2(𝑝), 

with 𝑁0 = 1 and 𝑁1 = 𝑝. The filtering process is:  

𝐻𝛄(𝐋)𝛔 = ∑𝑚
𝑘=0 𝛾𝑘𝑁𝑘(𝐋̃)𝛔,              (11) 

where 𝐋̃ = 2𝐋/𝜆 − 𝐈 . The complexity is 𝒪(𝑚|ℰ|) , and 

with Chebyshev polynomials limited to the mth order, the 

convolutions are localized to m hops. 

D. GAE Architecture 

The architecture of the proposed GAE model is 

depicted in Fig. 2. Each element of its architecture is 

discussed next. 

1) Graph encoder 𝐸𝒢   

The graph encoder has lE Chebyshev graph 

convolutional layers. The inputs to the graph 

convolutional layers or the number of channels in a 

hidden encoding layer 𝑙𝐸  is indicated by 𝑁𝑐 . If 𝑏𝑙𝐸 

denotes the bias of layer 𝑙𝐸  and ∗𝒢  represents the graph 

convolutional operator. The result is the output tensor, 

𝑋𝑙𝐸  denoted as, 

𝑋𝑙𝐸 = ReLU(𝛾𝑚(∗𝒢)𝑋𝑙𝐸−1 + 𝑏𝑙𝐸)            (12) 

To extract the temporal relationships from the time-series 

signal, we incorporate an LSTM unit that facilitates the 

modeling of recurrent information flows. An LSTM cell 

consists of the input 𝑖𝑙𝐸

𝑡 , output 𝑜𝑙𝐸

𝑡 , and forget gate 𝑓𝑙𝐸

𝑡 . 

Inside an LSTM unit, there exists two distinct states: i) 

the cell state 𝐶𝑙𝐸

𝑡 , and ii) the LSTM output or hidden state 

𝐻𝑙𝐸

𝑡 . 

2) Graph decoder 𝐷𝒢  

The main aim of the graph decoder is to produce an 

output 𝐕∗  that closely resembles the input 𝐗 . The 

reconstruction error is measured via 𝜂 = ‖𝐕∗ − 𝐗‖2.  In 

the same vein as the graph encoder, the outputs of the 

graph decoder are sequentially fed to the LSTM that 

processes time-evolving graph features. The cell state of 

the graph decoder-LSTM is regulated by 𝑖𝑙𝐷

𝑡 , 𝑜𝑙𝐷

𝑡 , and 𝑓𝑙𝐷

𝑡 , 

which stand for the input, output, and forget gates, 

respectively.  

V. THREAT MODELING AND DATA GENERATION 

A. Threat Model 

If the voltage measurement at bus 𝑖 and timestamp 𝑡 is 

denoted as 𝑉𝑖
𝑡, then the true voltage measurement, 𝑉true,𝑖

𝑡  

should align with the measured voltage, 𝑉𝑚,𝑖
𝑡  at control 

end (i.e., 𝑉true,𝑖
𝑡 = 𝑉𝑚,𝑖

𝑡 ). The tampered voltage 

measurement may contain false data values. The attack 

functions during different attack scenarios are represented 

as 

{

𝑉false,𝑖
𝑡 = 𝑉true,𝑖

𝑡 + Δ𝑉𝑖
𝑡                              

𝑉false,𝑖
𝑡 = 𝑉true,𝑖

𝑡 − Δ𝑉𝑖
𝑡                              

𝑉false,𝑖
𝑡 = 𝑉true,𝑖

𝑡 + 𝑒Δ𝑉𝑖
𝑡 − (1 − 𝑒)Δ𝑉𝑖

𝑡 ,

 

where Δ𝑉𝑖
𝑡  denotes the maliciously inserted data by the 

adversary, and 𝑒 denotes a binary variable with a value of 

1 indicating an additive attack and 0 representing a 

deductive attack. The attack functions incorporate 

additive, deductive, and combined attacks.  

B. Strategies for Attacks 

1) Random node attacks 

These attacks randomly target 𝑟 buses from a total of 

𝑁𝑙 , creating 𝑁𝑙!/(𝑟! (𝑁𝑙 − 𝑟)!)  possible subsets. Such 

randomness can lead to severe voltage instability, 

especially if affected buses are not restored promptly. 

2) Vulnerable nodes attacks 

Vulnerability refers to a power node’s likelihood of 

being a weak point in the system. Attacks on such nodes 

can cause significant voltage instability. We evaluate 

vulnerability by assigning scores to nodes based on 

electrical and topological metrics to identify the most 

vulnerable buses. We use the Analytical Hierarchical 

Process (AHP) to determine weights for each metric, 

calculate scores for electrical and topological 

vulnerabilities, and combine these to determine an overall 

vulnerability score. 

C. Data Generation 

To generate the normal time-series voltage data, we 

perform power flow analysis using Newton’s method in 

the MATLAB MATPOWER toolbox. This toolbox 

facilitates the calculation of system voltages, currents, 

and both real and reactive power flows. 

D. Hyperparameter Optimization 

We use a sequential grid search to optimize the 

hyperparameters for the proposed and benchmark 

detectors. The optimal hyperparameters for CNN, FNN, 

LSTM, GCNN, and GNN are:  

𝓗CNN ={4, 32, 0.4, Rmsprop, 5, Relu}, 

𝓗FNN = {4, 32, 0, Adam, N/A, Relu}, 
𝓗LSTM = {3, 32, 0.2, Adam, N/A, Relu}, 
𝓗GCNN ={5, 32, 0.2, Rmsprop, 4, Relu}, 

𝓗GAN ={6, 64, 0.2, Adam, 5, Relu}. 

For the ARIMA model, the optimal differencing 

degree and moving average are 1 and 0. The SVM 

model’s optimal gamma, kernel, and regularization are 

auto, sigmoid, and 1. 
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E. Performance Evaluation Metrics 

The detection performance of the proposed FDIA 

detector is evaluated using three metrics: Detection Rate 

(DR), DR =
𝑇𝑃

𝑇𝑃+𝐹𝑁
; False Alarm Rate (FAR), FAR =

𝐹𝑃

𝐹𝑃+𝑇𝑁
; and Accuracy (ACC), ACC =

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
. Here, 

TP, TN, FP, and FN denote the number of true positives, 

true negatives, false positives, and false negatives, 

respectively. 

VI. EXPERIMENTAL EVALUATIONS 

In this study, three different attack types are considered: 

additive, deductive, and camouflage attacks. For the latter 

attack strategy, both additive and deductive attacks are 

chosen in equal proportions. For each attack scenario, 5, 

10, 15, and 20% attack injection levels are chosen. On 

average the proposed model achieves 98.11% accuracy, 

98.76% detection rate, and 8.13% false alarm rate.  

A. Performance Against Random Attacks on Buses 

The proposed model’s detection performance against 

random buses attacks is depicted in Table I. The results 

reveal that as the injection level of the attack increases, 

the effectiveness of the detection decreases. This 

performance drop may be due to the increased likelihood 

of false positives. 

B. Performance Against Attacks on Vulnerable Buses 

The performance of the proposed model for the 

mentioned attack strategy is presented in Table II. From 

the table, it is observed that for each test case, the model 

reports relatively lower accuracy compared to the random 

node attacks. However, the model achieves more than 93% 

accuracy across the attack scenarios.    

TABLE I: PERFORMANCE AGAINST RANDOM NODE ATTACKS 

Attack type 
Performance 

Metric 

Injection levels 

5% 10% 15% 20% 

Additive 

DR 91.18 99.07 98.17 96.40 

FAR 6.48 8.28 9.97 10.79 

ACC 98.87 98.77 97.88 95.80 

Deductive 

DR 98.10 97.33 96.88 94.47 

FAR 8.24 9.63 10.99 12.98 

ACC 97.03 97.09 96.50 94.61 

Combined 

DR 97.15 95.58 94.97 92.90 

FAR 10.38 10.93 12.80 13.72 

ACC 95.22 95.58 95.38 93.54 

TABLE II: PERFORMANCE AGAINST VULNERABLE NODE ATTACKS 

Attack type 
Performance 

Metric 

Injection levels 

5% 10% 15% 20% 

Additive 

DR 98.31 97.78 97.01 95.88 

FAR 6.51 8.27 10.11 10.83 

ACC 98.07 97.31 96.49 94.73 

Deductive 

DR 98.22 97.67 96.99 95.75 

FAR 6.58 8.37 9.95 11.33 

ACC 98.00 97.17 96.37 94.56 

Combined 

DR 97.50 97.03 95.91 94.64 

FAR 9.56 10.22 11.13 12.66 

ACC 97.25 96.41 95.12 93.98 

VII. CONCLUSIONS 

This study presents a GAE-based FDIA detection 

framework dedicated to voltage regulation, evaluating its 

effectiveness against various attack types and injection 

levels. The proposed detector integrates an autoencoder 

with Chebyshev graph convolution recurrent layers to 

capture spatial and temporal correlations in measurement 

data. Simulation results show that the proposed model 

achieves up to 93.80% accuracy, with an average 20% 

improvement in ACC compared to benchmark detectors. 

Developing a generalized cyberattack detection scheme is 

suggested for future research. 
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