
Deep Deterministic Policy Gradient-Based 

Spectral Efficiency for Massive MIMO 

Communication System 

Nasaruddin Nasaruddin*, Afzal Risky, Yunida Yunida, and Ramzi Adriman
Department of Electrical and Computer Engineering, Universitas Syiah Kuala, Banda Aceh, Indonesia 

Email: nasaruddin@usk.ac.id (N.N.), afzal.r@mhs.usk.ac.id (A.R.), yunida@usk.ac.id (Y.Y.),  

ramzi.adriman@usk.ac.id (R.A.) 

 
*Corresponding author 

Abstract—Massive MIMO is a new configuration of MIMO 

technology that uses many antennas up to the order of 

hundreds to serve tens or hundreds of User Equipment (UE) 

at the same time and frequency. Massive MIMO technology 

is one of the spatial diversity techniques used to increase the 

Spectral Efficiency (SE) of current Fifth-Generation (5G) 

communication systems. Massive MIMO has a high 

complexity in signal processing because it serves a large 

amount of user traffic at the same time. Therefore, this paper 

proposes using the Deep Deterministic Policy Gradient 

(DDPG), a deep learning method that significantly improves 

both SE and runtime performance, making it highly effective 

for large-scale wireless communication systems. In the 

simulation, we are modeling a massive MIMO system with 

multiple Access Points (APs) and User Equipment (UEs). We 

are training the channel using the proposed DDPG model. 

Then, we analyze each end-user path’s Signal-to-Interference 

plus Noise Ratio (SINR) and compare it with conventional 

massive MIMO (without deep learning). In addition, the 

complexity of the proposed DDPG model in terms of runtime 

is analyzed and compared with the Convex Optimization 

Algorithm (CVX). The simulation results indicate that the 

performance of the massive MIMO system is improved with 

the proposed DDPG model. It achieves an optimal and higher 

spectral efficiency (SE) of 85% compared to not using the 

DDPG method. Additionally, it achieves an average Signal-

to-Interference-plus-Noise Ratio (SINR) of 19.54 dB, while 

the conventional method only provides an average SINR of 

15.32 dB. Furthermore, the proposed DDPG model has a 

lower complexity with a runtime ratio of 1:8000 compared to 

the CVX algorithm for the same number of epochs.  

Index Terms—Convex optimization, Deep Deterministic 

Policy Gradient (DDPG), deep learning, massive MIMO, 

spectral efficiency 

I. INTRODUCTION

5G technology is the current generation of cellular 

communications networks that are used to transmit data at 

very high speeds, reaching 20 Gigabits per second (Gbps), 

very low latency of 1 ms, wide bandwidth availability, and 

supported by the use of antennas on a large scale [1, 2]. 

The 5G cellular network utilizes a radio spectrum, 

enabling the technology to connect with multiple devices 

simultaneously. Apart from that, 5G technology also has a 

big impact on the Mobile Broadband (MBB) internet 

network, which can be connected to machine-to-machine 

(M2M) and Internet-of-Things (IoT) networks [3]. Unlike 

previous generations of communication technology, 5G 

utilizes the New Radio (NR) spectrum, offering adaptable 

access speeds based on the spectrum band used. Based on 

the 5G Public Private Partnership (5G PPP) in 2015, the 

vision of this fifth-generation technology is to become a 

key technology in the digital world with the support of 

ultra-high band infrastructure [4]. 

Several key technologies support 5G technology to 

improve wireless communication network performance. 

These include beamforming, millimeter wave (mmWave), 

full-duplex, small cell, and massive Multiple Input 

Multiple Output (MIMO) techniques [5–7]. Beamforming 

enables directional transmission of signals, improving 

signal strength and reducing interference, particularly in 

dense environments. The mmWave technology, operating 

in the 24 GHz to 100 GHz range, provides high data rates 

and bandwidth, although it has a limited range and is 

susceptible to obstructions. Full-duplex communication, 

allowing simultaneous transmission and reception on the 

same frequency, effectively doubles spectral efficiency 

compared to traditional half-duplex systems. Small cells, 

which are low-power base stations, improve network 

coverage and capacity in specific areas, especially in urban 

or indoor settings, and complement larger macro-cell 

networks [6]. The MIMO system is a spatial diversity 

technique that simultaneously uses multiple antennas to 

transmit information from numerous user equipment 

(UEs). On the other hand, a massive MIMO system is a 

new configuration form of traditional MIMO in which 

multiple antennas, on the order of hundreds, operate 

simultaneously to serve tens to hundreds of UEs on the 

same frequency at the same time [7]. 

In recent years, deep learning has started to be used to 

facilitate performance analysis of 5G communication 

systems, especially massive MIMO, which has high 

system complexity [8, 9]. It can provide processing results 

that are faster, more consistent, more reliable, and easier to 

configure. Therefore, this method is very suitable for use 

in complex communication technologies such as massive 

MIMO. This is also a new paradigm in machine learning 

that can function like the human brain and build multi-

layered neural networks. Generally, deep learning is 

trained on multiple similar examples, allowing the 
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machine to learn from previously available data to 

optimize the machine’s error bounds and have better 

generalization capabilities [10, 11]. 

Research on massive MIMO over the last twenty years 

has become a basic approach to improving Spectral 

Efficiency (SE) [12–15]. So massive MIMO is one of the 

spatial diversity techniques used to increase SE and energy 

efficiency in 5G communication systems [16–19]. SE is an 

important performance metric in massive MIMO systems, 

which is related to the suitability of the amount of 

information contained in a particular channel. In other 

words, SE is the real data speed in bits per second (bps), 

which is directly proportional to the amount of bandwidth. 

Massive MIMO has high complexity in signal processing 

due to the use of many antennas. The use of many antennas 

in massive MIMO corresponds to a significant increase in 

data traffic at the same time and frequency because the 

performance of Massive MIMO systems decreases due to 

the power of data processing. Therefore, Deep Learning 

(DL) is used to overcome complexity problems in massive 

MIMO. 

One of the DL methods for analyzing SE in massive 

MIMO communication systems is Deep Reinforcement 

Learning (DRL). DRL is a branch of machine learning, 

where machines can continue to learn from their 

environment to obtain more optimal performance 

parameters [20, 21]. In research conducted by Amjad Iqbal 

et al. [22] in the form of optimizing energy and spectral 

efficiency in the Cloud Radio Access Network (CRAN) 

with the DRL method based on the dueling Double Deep 

q-Network (D3QN) approach as a control policy to 

achieve maximum energy and spectral efficiency. The 

D3QN-based DRL method significantly improves CRAN 

system performance with dynamic channel access, mobile 

offloading, and optimal access management. 

Furthermore, the DRL method has also been used as a 

power allocation algorithm in MIMO-free cells [23]. In the 

research, two DRL methods were utilized: Deep q-

Network (DQN) and Deep Deterministic Policy Gradient 

(DDPG). These methods aim to maximize the sum 

Spectrum Efficiency (SE) in massive MIMO-free cells. 

The numerical simulation results show that the sum SE 

value is 33% higher than The weighted Minimum Mean 

Square Error (WMMSE) precoding method, and the 

execution time is 0.1% higher than the WMMSE method. 

Unlike traditional supervised learning, both approaches 

have low computational complexity, which requires a 

large data set with a complex computational algorithm. 

DDPG is particularly adept at managing continuous 

action spaces, a critical requirement for power control and 

beamforming tasks where actions (e.g., adjusting 

transmission power or antenna weights) vary continuously. 

The actor-critic framework employed by DDPG is well-

suited for optimizing such high-dimensional, complex 

systems, allowing for efficient exploration and learning of 

optimal policies. As described by Lillicrap et al. [24], this 

framework facilitates precise decision-making and 

minimizes computational complex-ity compared to 

traditional optimization methods. Consequently, the 

application of DDPG yields significant improvements in 

both spectral efficiency and runtime performance, making 

it a highly effective approach for large-scale wireless 

communication systems. Furthermore, other studies, such 

as those by Zhao et al. [23], have demonstrated the 

superiority of DDPG in enhancing the performance of 

massive MIMO systems. 

Massive MIMO systems, which utilize many antennas 

to simultaneously serve multiple UEs, introduce 

significant signal processing and resource allocation 

complexity. As the scale of these systems increases, 

maintaining high SE becomes a critical challenge. 

Traditional optimization techniques, such as Convex 

Optimization (CVX), though effective in smaller systems, 

struggle to cope with the scalability demands of large-scale 

networks. Specifically, as the number of Access Points 

(APs) and UEs grows, the computational overhead of these 

methods increases substantially, making them less 

efficient for real-time applications in massive MIMO. 

Convex optimization, as outlined in [25], is known for 

its ability to provide optimal solutions to various 

engineering problems. However, its applicability 

diminishes in large-scale systems like massive MIMO, due 

to the increased dimensionality and the time-consuming 

nature of solving high-complexity optimization problems 

in real-time. This limitation is further supported by Zheng 

et al. [26], who demonstrate that convex optimization-

based precoding techniques become computationally 

prohibitive as the number of antennas and users increases. 

These findings underscore the need for more scalable and 

computationally efficient methods to address the 

challenges of massive MIMO systems. 

Based on the facts, this paper proposes a DDPG-based 

DRL method to analyze the SE performance of 5G massive 

MIMO communication systems using the Minimum 

Mean-Square Error (MMSE) precoder technique. This is 

intended to align the UE’s need for high data rates with 

their spectrum. Meanwhile, spectrum availability in the 5G 

massive MIMO communication system is limited, so it is 

necessary to increase the SE to optimize the performance 

of massive MIMO.  

The main contributions of this paper can be summarized 

as follows: 

1) We analyze the close form of SE using a DDPG-based 

DRL for a 5G massive MIMO communication system. 

2) We provide the DDPG algorithm to obtain the SE of a 

massive MIMO system model. 

3) We analyze the complexity of the proposed DDPG 

model and compare it with the Convex Optimization 

(CVX) algorithm. 

The structure of this paper is as follows: Section II gives 

related works, Section III provides the research method, 

and Section IV gives results and discussion. Section V 

presents the conclusions. 

II. RELATED WORKS 

A. Deep Learning 

The MIMO communication system is a form of 

evolution from the conventional one-antenna system, 
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which requires at least two antennas on both the sending 

and receiving sides. MIMO systems have advantages in 

terms of increasing signal reliability and reducing 

communication interruptions when disturbances such as 

multipath fading and interference occur [27]. Currently, 

MIMO has developed further into massive MIMO with the 

emergence of high-frequency communication systems, 

which can be seen from the use of antennas in the order of 

hundreds to serve hundreds to thousands of users at the 

same time [28]. Massive MIMO can increase the capacity 

of the communication system without requiring additional 

spectrum. This is because the greater the number of 

transmitter and receiver antennas, the greater the possible 

path that the signal can take to reach its destination so that 

data speed and system reliability can increase. However, 

the use of a large number of antennas makes signal 

processing more complex due to the large number of 

information signals being processed simultaneously. So, 

this causes a decrease in overall system performance, and 

the signal processing time required is also longer. 

Therefore, a system is needed that can reduce the level of 

complexity in massive MIMO systems, one of which is by 

applying the Deep Learning (DL) method [8]. 

B. Deep Reinforcement Learning 

Recently, DL methods have been proposed to reduce the 

complexity of MIMO systems and achieve optimal 

performance [29–33]. Commonly used DL-based 

techniques include supervised learning and reinforcement 

learning. Supervised learning-based DL methods use Deep 

Neural Networks (DNNs) to predict system outputs with 

highly complex computational algorithms [34]. 

Furthermore, Deep Reinforcement Learning (DRL) can 

also be used to determine the mapping of large-scale 

fading coefficients and increase the sum rate through 

channel amplification [24]. On the other hand, DL 

techniques based on reinforcement learning focus on what 

actions the agent needs to perform when viewing the 

environment, such as the need to increase the cumulative 

reward. Reinforcement learning also known as DRL is a 

DL technique that does not require a training dataset, 

making it suitable for dynamic wireless networks. 

C. Deep Deterministic Policy Gradient 

Reinforcement learning methods are used to solve 

performance optimization problems in cellular networks 

[35, 36]. However, none of these studies consider massive 

MIMO systems. In recent years, several of his DRL 

techniques for large-scale networks have been proposed 

that apply the Deep Q-Learning Network (DQN) algorithm 

to real-world scenarios and are expected to improve 

performance. However, since this approach is limited only 

to discrete-form data control problems, continuous 

performance optimization in the downlink stage can 

reduce the cumulative rate of the system. Tiong et al. 

subsequently [37] proposed a new DRL algorithm called 

DDPG. This can be implemented in massive self-free 

MIMO systems, especially in the continuous power 

control process during the downlink phase. In addition, 

Zhao et al. [23] also proposed two DRL methods based on 

dynamic power allocation, DQN, and DDPG, for massive 

cell-free MIMO systems with moving users to maximize 

the downlink sum rate. 

Massive MIMO systems are highly dynamic and 

involve continuous interactions with multiple user devices, 

antennas, and varying channel conditions. The DDPG 

algorithm is particularly well-suited because:  

1) It can adapt to the continuous and high-dimensional 

action space required for controlling power allocation 

and beamforming in real time. 

2) Its actor-critic structure allows for more precise 

optimization of performance metrics like SE in a 

computationally efficient manner. 

3) Its sample efficiency and exploration strategy make it 

feasible to train the model without excessive data 

requirements, which is advantageous when real-world 

interactions are limited or costly. 

In this paper, we focused on DDPG because it is 

particularly well-suited for the continuous action space 

inherent in massive MIMO systems. Tasks like power 

allocation and beamforming require continuous 

optimization [23]. CNNs, while powerful in feature 

extraction tasks (such as image processing), are less 

commonly applied to such continuous control problems 

[24]. Similarly, alternative RL methods like DQN are 

better suited for discrete action spaces, which is less 

applicable to our use case [38]. 

III. METHOD 

A. System Model 

The considered system model in this paper is a downlink 

cell-free massive MIMO network with an operating 

frequency of 1.9 GHz and a bandwidth of 20 MHz, 

consisting of a Base Station (BS), K UEs, and M Access 

Points (APs), as shown in Fig. 1. Each UE and AP have 

one antenna, and all UEs are served simultaneously by all 

APs within a coverage area of 1×1 km2.  

 
Fig. 1. Return training of the proposed DDPG model in the downlink 

phase. 

The channel model in the system is Rayleigh fading. 

The different channel models do not influence the 

development of the proposed model. The channel 

coefficient between the m-th AP and the kth UE can be 

written as 

𝑔𝑚,𝑘 = √𝛽𝑚,𝑘ℎ𝑚,𝑘                          (1) 

where 𝛽𝑚,𝑘  and ℎ𝑚,𝑘  respectively are large and small-

scale fading coefficients which are distributed 
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independently and identically (i.i.d) with a random 

variable 𝒞𝒩(0, 1) with m = 1, 2, …, M and k = 1, 2, …, K. 

The information transmission process is divided into 

two parts, the uplink and downlink phases (payload data 

transmission), as follows: 

1) Uplink phase 

At this stage, all UEs first transmit the pilot sequence 

𝛗𝑘 to all APs during the training phase with a sample size 

𝜏𝑝 used by the kth UE which is denoted as √𝜏𝑝𝛗𝑘. So, the 

pilot signal vector received at the m-th AP can be written 

as 

𝐲𝑝,𝑚 = √𝜏𝑝𝜌𝑢 ∑ 𝑔𝑚,𝑘
𝐾
𝑘=1 𝛗𝑘 + 𝐧𝑝,𝑚           (2) 

where 𝜌𝑢  is the normalized transmission power in the 

uplink phase for each symbol and  𝐧𝑝,𝑚 ∽ 𝒞𝒩  (0,1) is 

additive white Gaussian noise (AWGN) on the 𝑚-th AP. 

2) Downlink phase 

At this stage, all APs transmit signals to all K UEs 

simultaneously. This can be explained as follows: 

𝑢𝑚 = √𝜌𝑑 ∑ √𝜂𝑚,𝑘𝑔̂𝑚,𝑘
∗𝐾

𝑘=1 𝑞𝑘                  (3) 

where 𝜌𝑑  is the normalized transmission power in the 

downlink phase for each symbol, 𝑞𝑘  is the intended 

symbol for the kth UE with a squared expected value 

E{|qk|2} = 1 , and 𝜂𝑚,𝑘  is the power control coefficient 

with 𝔼 {|𝜂𝑚,𝑘|
2

} ≤ 𝜌𝑑. Meanwhile, the signal received on 

the kth UE can be written as 

𝑟𝑘 = √𝜌𝑑 ∑ √𝜂𝑚,𝑘𝑔𝑚,𝑘𝑔̂𝑚,𝑘
∗𝑀

𝑚=1 𝑞𝒌 +  

√𝜌𝑑 ∑ ∑ √𝜂𝑚,𝑘́𝑔𝑚,𝑘𝑔̂𝑚,𝑘́
∗𝐾

𝑘́≠𝑘
𝑀
𝑚=1 𝑞𝑘́ + 𝑛𝑘     (4) 

where 𝑛𝑘 denotes the noise in the kth UE with a random 

variable 𝒞𝒩 (0,1).  

B. Spectral Efficiency 

Spectral Efficiency (SE) is the average number of bits 

of information per complex-valued sample transmitted on 

a channel (bits/s/Hz). SE must be considered in the channel 

between the UE and the BS, measured in bits/s/Hz/cell. 

The channel between BS and UE at a location certainly has 

different SE depending on the encoding/decoding scheme 

applied, but the maximum achievable SE value is 

important in transmission system design. To get a value of 

SE performance, it is necessary to analyze the downlink 

signal-to-interference-plus-noise ratio (SINR) equation for 

each kth UE as follows. 

SINR𝑘 = 𝜌𝑑(∑ √𝜂𝑚,𝑘
𝑀
𝑚=1 𝛾𝑚,𝑘)

2
  

(
1

𝜌𝑑(∑ √𝜂𝑚,𝑘́
𝑀
𝑘́≠1

𝛾𝑚,𝑘́

𝛽𝑚,𝑘
𝛽

𝑚,𝑘́
)

2

|𝝋
𝑘́
𝐻𝝋𝑘|

2
+

1

𝜌𝑑 ∑ ∑ 𝜂𝑚,𝑘́𝛾𝑚,𝑘́𝛽𝑚,𝑘
𝐾
𝑘́≠𝑘

𝑀
𝑚=1 +1

)   (5) 

Meanwhile the SE of each kth UE [38] can be written as  

𝑆𝐸𝑘 = 𝑙𝑜𝑔10( 1 + 𝑆𝐼𝑁𝑅𝑘).                (6) 

C. DDPG Model 

DDPG is a model of DRL that uses a Deep Neural 

Network (DNN) as a policy network and produces output 

in the form of an action DDPG uses an actor method 

𝐴𝐶(𝛿𝑎) to take action by looking at a state s, where the 

critical actor  𝐴𝐶 (𝛿𝑎 ) is a network policy with 𝛿𝑎  as a 

network parameter. Criticism 𝐶𝑟 (𝛿𝑐 ) is a parameter for 

evaluating action 𝑎 , where this criticism is a different 

network from the critical actor. The optimal policy or 

policy from DDPG is formulated into Eq. (7) [36]. 

opDDPG = arg max
𝐴𝑐(𝜹𝑎

𝑜𝑝
)

𝐶𝑟(𝛿𝑐
𝑜𝑝

)                (7) 

where opDDPG is the optimal policy of DDPG, 𝐴𝐶(𝛿𝑎) and 

𝐶𝑟(𝛿𝑐) are an actor and critic who collaborate with each 

other, respectively, to obtain optimal parameters 𝛿𝑎
𝑜𝑝

 and 

𝛿𝑐
𝑜𝑝

 are as follows [36].  

𝛿𝑎
𝑜𝑝

= arg max
𝜹𝑎

𝐿(𝛿𝑎)                        (8) 

𝛿𝑐
𝑜𝑝

= arg max
𝜹𝑐

𝐿(𝛿𝑐)                        (9) 

This DDPG system uses a multi-agent system for 

training 𝐴𝐶  (𝛿𝑎 ) and 𝐶𝑟 (𝛿𝑐 ). In contrast to other system 

models, DDPG has output from actors 𝐴𝐶 (𝛿𝑎) in the form 

of a continuous value, which is shown in (10) [23]. 

𝑎𝑚,𝑘
𝑡 = [𝐴𝑐(𝛿𝑎)|𝑠𝑚,𝑘

𝑡 ]
0

√𝜌𝑢
                  (10) 

D. DDPG Algorithm 

DDPG algorithm is oriented toward or recognizes the 

environment by interacting with it. DDPG agents can then 

learn from the feedback obtained to develop optimal 

policies. In general, DRL can learn about their 

environment based on Markov’s decisions. The DDPG 

algorithm can be divided into three implementations: 

value-based, policy-based, and critical agent-based 

approaches. In this paper, an algorithm based on a policy 

approach is used 𝜇(𝑠|𝜃𝑢) and value networks 𝑄(𝑠, 𝑎|𝜃𝑄) 

which is the actor value according to the following 

Bellman function [36]: 

𝑄(𝑠, 𝑎)𝑢 = 𝜂(𝑠,𝑎,𝑟,𝑠′)∈𝐵[𝑟(𝑠, 𝑎) + 𝜍𝑎′
𝑚𝑎𝑥𝑄𝑢(𝑠′, 𝑎′]    (11) 

Based on Eq. (11), the value of 𝑄(𝑠, 𝑎) is the actor’s 

value which is obtained variably as the system model 

updates the parameters. The DDPG system uses a critical 

network function to collect every change in parameter 

values. Critic uses the 𝜃𝑄 ∈ 𝑅 function and actor uses the 

𝜃𝑢 ∈ 𝑅  function, as in the following Poylack averaging 

equations [36]: 

𝜃𝑄′
← 𝜎𝜃𝑄 + (1 − 𝜎)𝜃𝑄′

                (12) 

𝜃𝑢′
← 𝜎𝜃𝑢 + (1 − 𝜎)𝜃𝑢′

                 (13) 

where 𝜎 ∈ (0,1) is a coefficient that determines the speed 

of change in target network parameters. In other words, 

𝜎 ∈ (0,1)) is a measure of the learning rate of the DDPG 

system. Therefore, the DDPG algorithm consists of actor-
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critic, environment, state, and return value as illustrated in 

Fig. 2. 

 
Fig. 2. Proposed DDPG algorithm for massive MIMO. 

1) DDPG parameters 

At this stage, the DDPG algorithm is structured as shown 
in Fig. 2, utilizing the parameters outlined in Table I to 
design the DDPG system. 

     

Parameter Value/Description 

Operating frequency 1.9 GHz 
Bandwidth 20 MHz 

Coverage area 1×1 km2 
No. of APs and UEs M APs, K UEs 

Antenna setup Single antenna per AP and UE  
Channel model Rayleigh fading 

DDPG learning rate 10-3 

DDPG discount factor 0.99 
Buffer size 106 

Batch size 200 
Training epochs 500 

Exploration strategy Ornstein-Uhlenbeck process 
Neural network size 256 neurons per layer 

Training time 12-24 hours 
Hardware setup NVIDIA RTX 2080 
Software setup  TensorFlow and MATLAB 

2) Actor 

The actor in the proposed algorithm generates a policy 

from which an action is taken based on current 

circumstances. This actor serves as an agent that interacts 

with the massive MIMO system. An agent is in a state that 

acts based on a behavioral policy towards the environment. 

An action performed by an agent that modifies the state of 

the environment irreversibly (without returning to its 

original state). This actor interacts according to the 

parameters in Table I. 

3) Dataset 

The dataset in this paper was generated using the code 

in [36]. Then, the dataset is a training channel dataset that 

was generated by computer simulation using MATLAB 

software. This was done by considering the number of 

APs, UEs, and transmission power. In this paper, the 

dataset consists of 500 epochs for each UE. 

The datasets are used to train system models to be more 

sensitive and recognize the input data. This process also 

generates weight and return values, which the model then 

stores as a dataset during the training process. Through this 

data collection, the model becomes more sensitive and able 

to recognize data that will be used for testing later on. The 

testing process for the DDPG system model. The DDPG 

system model at this stage already has weights and values 

from the previous training process. At this stage, the 

system model can recognize the data well and produce 

optimal SE values. 

4) Buffer 

The DDPG buffer stores all the states and rewards 

obtained when the DDPG actor interacts with the dataset. 

The critic and environment use the stored data functions to 

obtain updated information for each actor interacting at 

any time. 

5) Environment 

This function is used by DDPG as a condition or state 

obtained by the system when actors interact. This function 

specifically stores state values and is always updated after 

the DDPG actor interacts with the dataset. With this 

environment, the DDPG system can recognize a state by 

using a previously saved state. The goal is to find the best 

resulting sequence of actions that can provide optimal 

policy functions in a given situation. The environment in 

which the agent finds itself provides a value that indicates 

the quality of the action performed so that actions of the 

correct and appropriate quality can be selected. 

6) Critic 

This function is used to evaluate actions or interactions 

carried out by actors. This criticism is used to update every 

action the actor takes to get a better score. This function 

cannot be separated from the actor function because this 

function greatly influences the actions carried out by the 

actor on the dataset. The critic’s role is to assess the actor’s 

policies and guide the actor toward the optimal path 

through feedback. This method significantly reduces the 

burden of manually adjusting hyper-parameters in training 

and stabilizes its convergence. On the other hand, hyper-

parameter tuning and unstable environments are still major 

challenges for most state-of-the-art DRL models, such as 

DDPG. 

7) SINR 

This stage is the output value from the DDPG system, 

in the form of a SINR value, which is then stored for each 

user dataset. After obtaining all SINR values for each user, 

the DDPG interaction process is also completed. The SE 

value for each user depends on the SINR value. The higher 

the SINR value, the higher the level of spectral efficiency.  

The SINR value in a massive MIMO system has a great 

influence because this massive MIMO system uses many 

antennas, which requires efficient spectrum usage. An 

illustration of the simulation stages can be seen in Fig. 3. 

Fig. 3 illustrates that the process begins with generating 

a dataset, which is utilized for both training and testing. 

Initially, this dataset undergoes training before being fed 

into the DDPG system for further training. After training, 

the system is assessed for stability. If it is found to be 

unstable, the process returns to data training for retraining. 

Once the system achieves stability, the dataset is then 

utilized for testing, and the DDPG system also undergoes 

testing. Finally, the results from the DDPG system testing 

are analyzed in terms of SINR and SE to evaluate the 

system’s performance.  
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TABLE I: THE SIMULATION PARAMETERS



 
Fig. 3. Flowchart of the simulation stages. 

IV. RESULT AND DISCUSSION 

A. Evaluation of Proposed DDPG Model 

The previously generated training channel dataset is 

then input into the DDPG method. In this process, we 

optimize the dataset using the DDPG method to achieve 

better SE performance parameters. In this process, several 

new parameters are used to design the DDPG algorithm, 

as shown in Table I.  

 
Fig. 4. Return training of the proposed DDPG. 

The initial assessment involved testing the return 

training of the proposed DDPG on a massive MIMO 

system. The experimental results show that the return 

value of each epoch user has different values, as shown in 

Fig. 4. However, the DDPG system has the most optimal 

return value. For each epoch, ten training iterations are 

carried out, and the most optimal return value is 

determined based on the return value of the tenth iteration. 

The return value from the last iteration is stored in the 

buffer, and the critical weights are updated so that the 

DDPG system has the latest reference value for each epoch. 

The return value of the DDPG system is stable starting at 

the 336th epoch with a return value of 0.9453 and becomes 

increasingly stable until the 400th epoch. This stability 

value shows that the system has reached its optimal value 

and that the training data carried out is sufficient. 

The system that has been tested and validated is then 

trained. The dataset used to perform these experiments 

consists of 10% or 50 epochs of data. The DDPG algorithm 

used for testing is the same as the one used during training 

and validation. However, the system model already has 

biases and weights from previous data. Thus, during 

testing, the model will optimally recognize channel data. 

The test return value of the proposed DDPG model has a 

higher value than the return value during testing as shown 

in Fig. 5. It can be observed that the testing return value 

for each user epoch is higher than the training return value. 

The number of epochs used in this testing process is 100 

epochs or 20% of the dataset. The system has a stable 

return value at the 35th epoch with a return weight of 

0.9506. The stable return value in this process is higher 

than the stable value in the training process which is only 

0.9453. 

 
Fig. 5. Return testing of the proposed DDPG. 

B. Spectral Efficiency 

Once training and testing are complete, output data will 

be obtained as SINR values for each user. Based on Fig. 6, 

each user has 100 data epochs with sequentially different 

average SINR values: 19.6892 dBm, 19.4900 dBm, 

19.5790 dBm, 19.3727 dBm, and 19.5928 dBm. SINR is 

the ratio of the strength of the main signal to the 

interference and noise mixed with the main signal. In this 

paper, the main transmitted signal strength was 200 mW, 

which is equivalent to 23.0103 dBm. The total average 

SINR value for all users is 19.5447 dBm, so compared to 

the transmitted signal strength, there is only a difference of 

15.0606%, or in other words, the accuracy level of the 

SINR value is 84.9393%. Since the SINR value has a high 

accuracy value concerning the signal transmission value, 

it can be concluded that the obtained SE value also has a 

similar accuracy. Indeed, the SE value depends strongly on 

the SINR, as in (5). 

 
Fig. 6. SINR testing of the proposed DDPG. 
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Fig. 7. SE of the conventional system. 

 
Fig. 8. SE of the proposed DDPG system. 

The results for SE are achieved using the DDPG 
algorithm and the dataset generation algorithm, as shown 
in Figs. 7 and 8. The spectral efficiency values of these two 
figures show very clear differences. This is because the 
spectral efficiency using the DDPG system has a SINR 
value that is more stable and optimal. The SINR value 
determines the efficient level of spectral use in a 
communications network. The stable value in the DDPG 
system model is because the system model has sufficient 
initial data used in the training process, so at this testing 
stage, the system model can already recognize the data 
used. 

The SE values for the conventional and the proposed 

DDPG models are illustrated in Figs. 7 and 8, respectively, 

are very different. It can be seen that when using the DDPG 

method on a cell-free massive MIMO system, each user 

has an average SE value of 1.1052 bps/Hz, 1.1571 bps/Hz, 

1.1010 bps/Hz, 1.0462 bps/Hz, and 1.2563 bps/Hz. 

Meanwhile, in Fig. 8, the average SE value for user 1 is 

4.3678 bps/Hz, user 2 is 4.3235 bps/Hz, user 3 is 4.2607 

bps/Hz, user 4 is 4.3459 bps/Hz and user 5 is 4.3569 

bps/Hz. From these average values, spectrum utilization 

seems more efficient and optimal in a massive 5G MIMO 

communication system. Optimal spectrum usage can 

significantly enhance the performance of 5G 

communication systems. The comparison of SE values 

using the DDPG system yields considerably better and 

more optimal results. 

The proposed DDPG model achieved a significantly 

higher SE gain compared to the conventional model, with 

an average difference of 3.7 b/s/Hz, as shown in Fig. 9. 

The conventional system in Fig. 9 is a massive MIMO 

system that does not utilize Deep Reinforcement Learning 

(DRL) techniques like DDPG. Additionally, SE values 

tend to be more stable than with conventional methods. 

This shows that a DDPG-based massive MIMO system 

can effectively maximize spectrum allocation to each user 

terminal simultaneously. 

 
Fig. 9. SE comparison of the proposed DDPG and conventional systems 

for User 1. 

C. Complexity Analysis of the Proposed DDPG 

Convex Optimization (CVX) is a method of solving 

optimization problems, an algorithm to find the solution to 

a problem. In this paper, we use the CVX algorithm to 

compare the complexity of the proposed DDPG algorithm 

with CVX. This algorithm was chosen because it is suitable 

for finding an optimal solution to a problem. This 

optimization is the process of maximizing or minimizing 

the objective function while paying attention to existing 

value constraints. This optimization plays an important role 

in the design of a system. Through this optimization, the 

system can achieve high throughput with fewer inputs and 

reduce the time required to process data. 

 
(a) 

 
(b) 

Fig. 10. Complexity of (a) convex optimization, and (b) proposed 

DDPG system. 
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To see how much this DDPG system can solve complex 

problems, the CVX algorithm has been simulated to 

compare the optimization process with the proposed DDPG 

model. The comparison of the complexity of the DDPG 

algorithm with CVX can be seen in Fig. 10. The more 

complex the data executed by the system; the response time 

required by the system is also much longer. As shown in 

Fig. 10, it can be concluded that the DDPG algorithm can 

solve the problem 8000 times faster in terms of execution 

time than the CVX algorithm. This demonstrates the 

effectiveness of the DDPG algorithm in solving more 

complex problems, such as massive MIMO systems. 

The results demonstrate significant improvements in SE 

and SINR using the DDPG algorithm compared to 

conventional methods. However, one limitation we 

identified is the relatively high training time required for 

the DDPG model, particularly when scaling to larger 

numbers of antennas and users in the massive MIMO 

system. This suggests that further research is needed to 

explore ways to reduce the computational burden, such as 

optimizing the neural network architecture or using 

distributed learning techniques to parallelize the training 

process. Additionally, while the model performs well 

under simulated channel conditions, real-world 

implementation may present challenges, including 

variability in channel state information and hardware 

constraints. Future work could focus on testing the model 

in more dynamic environments or developing hybrid 

models that integrate DDPG with traditional optimization 

techniques to improve robustness and scalability. 

Implementing DDPG on hardware platforms presents 

significant computational challenges, particularly when 

processing high-dimensional data in real time. This can be 

difficult due to limited computational resources and the 

necessity for efficient algorithms that can function 

effectively on edge devices or within network constraints. 

V. CONCLUSION 

This paper has analyzed Spectral Efficiency (SE) based 

on the Deep Deterministic Policy Gradient (DDPG) 

method in the 5G massive MIMO communication system. 

The use of the DDPG-based DRL method aims to simplify 

the SE system performance analysis stages, which go 

through several stages such as training and testing. The 

testing of the DDPG method resulted in an average SINR 

value of 19.5 dB, demonstrating high accuracy. This SINR 

value is used for system testing with the proposed DDPG 

method to obtain a higher SE value compared to 

conventional methods. This is because the DDPG system 

can study the condition of the information delivery channel 

until it reaches the user. The DDPG system can also 

overcome complexity problems in 5G massive MIMO 

communication systems with the basic reference being the 

short data processing time required. This is because the 

DDPG method always updates every DDPG actor 

interacting with the dataset. Therefore, the DDPG system 

can solve complex problems and provide optimal solutions. 

The DDPG algorithm significantly enhances SE and SINR 

in massive MIMO systems, while addressing 

computational challenges, but further research is needed to 

optimize training time and test real-world performance. 

Exploring the application of DDPG in other areas, such as 

energy-efficient communication or multi-objective 

optimization in wireless networks, could extend its utility 

beyond the current context. 
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