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Abstract—Beyond 5G (B5G) networks will deploy hybrid 

multi-radio access technologies for improved Spectrum 

Efficiency (SE) and Energy Efficiency (EE). For further 

capacity enhancement, code and power domain multiplexing 

are applied on hybrid Power Domain Sparse Code Non-

orthogonal Multiple Access (PD-SCMA) schemes. In order to 

realize optimal performance, robust Resource Allocation 

(RA) policies are required with the best candidate for the 

complex overloaded B5G systems based on Artificial 

Intelligence (AI) techniques. This work develops a deep 

neural network (DNN) aided resource allocation scheme for 

an uplink PD-SCMA network with Near-User (NU) and Far-

User (FU) groups, multiplexed in the power and code domain. 

The RA problem is formulated as a non-convex joint 

optimization problem then decomposed into three sub-

problems namely Codebook Assignment (CA), User 

Clustering (UC) and power allocation (PA). For the three 

sub-problems, a three-stage generic fully connected DNN is 

trained to approximate the PA, CA and UC resource 

allocation solution by the proposed modified Primal-Dual 

Interior Point Method (mPD-IPM). The proposed mPD-IPM 

generates the near-optimal RA solutions that form the DNN 

input labels. The DNN-mPD-IPM not only greatly enhances 

the computational efficiency but also achieves improved 

convergence rates and guarantees both the ergodic and non-

ergodic sum rates of the system compared to generic 

algorithms. Simulation results show that the DNN aided 

resource allocation closely learns the system capacity and 

computational performance of the proposed mPD-IPM and 

further outperforms generic RA algorithms. Compared to 

cross-layer codebooks, mPD-IPM and DNN-mPD-IPM 

achieves approximately 19% higher capacity. The proposed 

DNN-mPD-IPM that learns to approximate the proposed 

mPD-IPM has an execution time that is approximately 70% 

lower than mPD-IPM.  

Index Terms—Deep neural networks, Power Domain Sparse 

Code Non-Orthogonal Multiple Access (PD-SCMA), primal-

dual interior point method, resource allocation, system 

capacity

I. INTRODUCTION

The need for advanced multi-radio technologies for 

increased bandwidth, Spectrum Efficiency (SE) and 

Energy Efficiency (EE) for current and Beyond 5G (B5G) 

thirsty network applications need not be reemphasized: 

Non-Orthogonal Multiple Access (NOMA) schemes have 

been developed for spectral efficiency enhancement in 

divergent application scenarios compared to the 

conventional Orthogonal Multiple Access (OMA) scheme 

[1], Hybrid NOMA schemes that employ multiplexing to 

support highly overloaded multi-user systems have also 

been developed [2–6]. Multiple users are multiplexed on a 

single resource element in the code domain such as in 

Sparse Code Multiple Access (SCMA) [7], or power 

domain for Power Domain Non-Orthogonal Multiple 

Access (PD-NOMA) [8] and in both domains for the 

hybrid NOMA. As an example, in the hybrid Power 

Domain Sparse Code Non-Orthogonal Multiple Access 

(PD-SCMA), Near-User equipments (NUs) and far-user 

equipments (FUs) are co-multiplexed using PD-NOMA 

into a codebook, while allocating distinct power levels and 

hence applying Successive Interference Cancellation (SIC) 

for their detection at the receiver. Furthermore, different 

codes are exclusively assigned to the NU-FU clusters, 

hence employing any of the various versions of the 

Message Passing Algorithm (MPA) based detectors [9]. 

The PD-SCMA multiplexing performance is a function 

of resource management at the transmitter, interference 

management in the channel and Multi-User Detection 

(MUD) at the receiver. The development of optimal 

resource allocation (RA) schemes including Codebook 

Assignment (CA), User Clustering (UC) and Power 

Allocation (PA) in PD-SCMA is needed for optimal 

performance and is a challenging task. In [3], NUs cluster 

and FUs cluster were simultaneously supported in PD-

NOMA while data for NUs was transmitted by SCMA 

scheme. The joint access scheme significantly improves 

the system throughput compared to the conventional OMA. 

For purposes of improving spectral sharing, the work in [4] 

developed a numerical analysis for the proposed PSMA 

that allows overloading in both power and code domains. 

Additionally, authors in [5] explored joint power-domain 

and SCMA-based NOMA system for downlink in B5G, in 

order to increase the number of supported User 

Equipments (UEs). The work in [6] proposed biological 

based RA schemes, namely, the Ant Colony Optimization 

(ACO), Particle Swarm Optimization (PSO) and a hybrid 

Adaptive Particle Swarm Optimization (APASO) 

algorithms for an uplink PD-SCMA aimed at enhancing 

the system sum-rate and energy efficiency. For these 

schemes, a joint MUD based on SIC and MPA variants are 

employed to decode the transmitted signals. Furthermore, 

the PD-SCMA hybrid NOMA closed-form solutions for 

codebook, pairing and power multiplexing capacity 
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bounds were derived in [9], with RA challenges 

highlighted. These challenges necessitate different modern 

methods for RA in B5G networks. 

The evolution of Artificial Intelligence (AI) has 

occasioned the development of machine learning 

algorithms. As a subset of machine learning, Deep 

Learning (DL) has found applications in advancing and 

realization of the full potential of B5G networks due to its 

superior handling, processing and analysis of huge data 

with diverse degrees of complex networks, compared to 

conventional machine learning techniques in [10]. 

Recently, DL architectures find applications in diverse 

domains of wireless B5G networks producing faster, easily 

configurable, more consistent and reliable results. DL 

algorithms are implemented using Neural Networks (NN) 

consisting of input, hidden and output layers as outlined in 

[11]. In NOMA systems, DL algorithms have recently 

been applied in enhancing SE and EE, massive 

connectivity and latency reduction [12–14]. Basically, in 

NOMA, two types of learning can be adopted, namely, 

offline and online Deep Neural Network (DNN) learning. 

In offline training, Channel State Information (CSI) of 

diverse environments fetched from input sequences and 

simulations are substantially trained. Conversely, in online 

training, the input signal is trained with real-time CSI 

helped by the pilot signals data. The authors in [12] applied 

a DL based Long Short Term Memory (LSTM) network in 

NOMA environment with randomly deployed users but 

served by same Base Station (BS). Here, the LSTM is 

trained offline by simulated data under disparate channel 

conditions, then deployed online. A DNN algorithm was 

employed in [13] to predict the power allocation for 

optimized Energy Efficiency (EE) in an imperfect SIC. A 

DNN that incorporates random user activation and symbol 

spreading was deployed to enhance the reliability of grant-

free NOMA in [14] for low-latency Internet of Things (IoT) 

applications. The DNN learns by utilizing a multi-loss 

function where the penalty is based on user activation 

probability. In a bid to optimize RA schemes, thereby 

minimizing the computational complexity and time, B5G 

NOMA schemes have embraced DL based algorithms. The 

authors in [15] investigated an energy efficient Deep 

Reinforcement Learning (DRL)-assisted RA for Radio 

Access Network (RAN) slicing flexibility. By making full 

use of channel information, the work in [16] explored a RA 

scheme using DL architecture to follow the status of 

channel and help the flexible and precise allocation 

scheme. Compared to traditional resource optimization 

schemes, the proposed model exhibits significant 

performance improvement and reduced computational 

time. A supervised DL model to solve the sub-band and 

power allocation problem in a multi-cell network was 

proposed in [17]. In the work [18], RA for uni-cast and 

multi-cast services of multimedia TV broadcasting was 

proposed; a LSTM based DL model constructed the 

dynamic space-time traffic model of the multi-cast service 

thereby providing a basis for further network RA; and then 

a DRL framework was deployed for the RA optimization. 

In order to accommodate diverse Quality of Service (QoS) 

requirements in B5G networks, authors in [19] proposed a 

cascaded NN structure where the first NN estimated the 

optimal bandwidth allocation while the second NN 

estimated the power allocation for QoS satisfaction. The 

performance of the cascaded NN outdoes that of the fully 

connected NN structure in terms of QoS guarantee. 

However, these works do not address the hybrid NOMA 

schemes. 

In comparison to genetic RA algorithms, DL based RA 

algorithms have exhibited great potential in improving 

system throughput in SCMA. Authors in [20] explored the 

generation of codebooks, then deploys multiple basic 

DNN units between signal streams and resources such that 

these DNN units can learn the appropriate mapping. A RA 

(codebook allocation and power distribution) algorithm 

based on LSTM and dueling Deep Q Network (DQN) was 

proposed in [21] for SCMA based Multi-Access Edge 

Computing (MEC) networks aimed at maximizing the 

computational time in a resource-constrained IoT devices. 

In an attempt to avoid Inter-Cell Interference (ICI) for 

SCMA users, the work in [22] investigated a strategy of 

radio RA based on LSTM. The input to the LSTM network 

constitutes the interference power received at individual 

resource blocks predicted before signal transmission. The 

resource blocks with less predicted interference are then 

selected for signal transmission thereby exhibiting great 

potential in ICI avoidance. Authors in [23] proposed an 

auto-encoder based on DNN that combines encoding and 

decoding together for near optimal codebook generation 

and signal bits reconstruction for a dense SCMA. 

To further realize benefits that come with NOMA 
namely, spectrum sharing efficiency, overloading and 
energy efficiency, several works have proposed and 
investigated the performance of hybrid NOMA schemes in 
[2–6, 9]. In these schemes, generic algorithms such as 

SCOA, OMSP and QAPA in [2], DPR-RA in [9] and 
biological RA schemes in [6], and conventional MUDs 
such as SIC, MPA, EPA and their combinations are 
proposed for RA and detection respectively. Although 

there has been significant effort to improve allocation 
strategies of radio resources at transmission as well as 
signal detection and reconstruction at reception, generic 
algorithms still exhibit sub-optimality. Besides, with 
increased resource overloading, generic algorithms 

saturate thereby limiting the multiplexing potential of a 
hybrid NOMA scheme. In addition, the generic RA and 
MUDs based architectures exhibit increased 
computational complexity and take longer computational 

time as the number of user equipment in the system bulge. 
Given the potential associated with DL in radio resource 
management, in both PD-NOMA and SCMA, this work 
considers the deployment of DNN based resource 

allocation model for a hybrid NOMA scheme. 

Previously, significant works have been done in 

optimizing RA and detection via DL in SCMA and PD-

NOMA separately and only a few works have focused DL 

deployment for hybrid NOMA. In [24], an uplink hybrid 

NOMA scheme (HMAS) that jointly adopts Orthogonal 

Frequency Division Multiple Access (OFDMA) and 

SCMA to support NUs and FUs respectively was 

developed. Two DNN based detectors which are trained 

offline via simulated data and applied online for real-time 

detection are proposed for each user group. The proposed 
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detector significantly outperforms the conventional joint 

MPA-SIC detector. An iterative cross-physical-and 

application-layer codebook allocation for uplink PD-

NOMA SCMA video communications was proposed in 

[25]. Firstly, the codebooks are assigned generically using 

the physical layer Channel State Information (CSI) then 

exchanged within users intentionally to minimize the MSE 

therewith, increasing the Peak to Signal Noise Ratio 

(PSNR). To reduce the computational complexity and 

further optimize the CA, a DNN approach is proposed, 

which significantly improves the video PSNR, reduces the 

execution time albeit a slight performance degradation. 

The RA in hybrid NOMA is a multi-dimensional problem. 

However, authors in [25] only considered the codebook 

allocation of the hybrid PD-SCMA. 

This work develops and investigates two resource 

allocation schemes namely, modified Primal-Dual Interior 

Point Method (mPD-IPM) and DNN aided mPD-IPM 

(DNN-mPD-IPM) for an uplink hybrid PD-SCMA 

network. The developed RA schemes feature UEs channel 

gains, UE distance to BS, NU and FU cluster power level 

distinctiveness and interference threshold. The RA 

problem is formulated as a Mixed-Integer Non-Linear 

Programming (MINLP) RA problem. The MINLP 

optimization problem is decomposed into three sub-

problems namely; PA, CA and UC. Firstly, a three-stage 

mPD-IPM RA is proposed to obtain the optimal PA, CA 

and UC solutions that are then regarded as the data set label 

input for the DNN aided RA algorithm. Secondly, an 

alternate three-stage fully connected DNN-mPD-IPM RA 

is then trained to approximate the label input, which not 

only enhances the computational efficiency and 

convergence rate but also the system capacity. Different 

from [25] which only considered CA, we explore the joint 

RA of CA, FUs and NUs clustering and PA. The DNN-

mPD-IPM provides a unified framework for optimizing 

the PD-SCMA RA scheme. Developed results 

demonstrate that the proposed DNN-mPD-IPM optimizes 

the mPD-IPM RA scheme and significantly outperforms 

the benchmark generic RA schemes in terms of improving 

system performance.  

A. Organization 

The rest of the paper is organized as follows: the system 

model and problem formulation are presented in Sections 

II and III respectively. Section IV and Section V details the 

proposed mPD-IPM and DNN based RA schemes 

respectively while Section VI presents the convergence 

and complexity analysis. In Section VII, simulation results 

and discussions are presented. Finally, Section VIII 

concludes the paper. 

B. Notation 

We denote by x, x, X, and 𝒳 a scalar, vector, matrix and 

set respectively. A set of M-ary numbers is denoted by M. 

What's more, xT and diag(x) represent the transpose and 

diagonal matrix respectively. Besides, diag(x) is a vector 

of the diagonal elements of matrix X. The summary list of 

all notations and variables is given in Table I. 

 

   

Notation Meaning 

𝐶 Codebooks 

𝐽 Codebook size 

𝑈 NUs in the BS 

𝑁 Resource elements (REs) 

ℎ𝑢,𝑐
NU, ℎ𝑘,𝑐

FU Channel fading gains 

𝑅 Achievable total system sum rate 

𝜀𝑢,𝑐
NU, 𝜀𝑘,𝑐

FU Channel estimation errors 

𝑞𝑢,𝑐
NU, 𝑞𝑘,𝑐

FU Codebook assignment policies 

𝐴𝑘,𝑢
𝑐  User clustering policy 

𝑃𝑢,𝑐
NU, 𝑃𝑘,𝑐

FU Power allocation policy 

𝑦𝑘,𝑐
FU FU Received signal at BS 

𝐾 FUs in a BS 

𝒰CB Set of NUs paired on codebook C 

ℐ𝑢→𝑘
𝑐,th

 Pairing Interference 

𝑑𝑓  No. of UEs in a RE 

𝐷 Multiplexing codebook bound 

𝑑𝑣 No. of REs in a codebook 

𝑟𝑢,𝑐
NU, 𝑟𝑘,𝑐

FU Achievable user sum rate 

𝑥𝑢,𝑐
NU, 𝑥𝑘,𝑐

FU Transmitted signals 

II. SYSTEM MODEL 

This article proposes a deep learning aided resource 

allocation protocols for an uplink hybrid NOMA system to 

enhance efficient spectrum sharing in overloaded systems 

such as heterogeneous networks and IoE applications. The 

utilized system network model is expounded in the 

following subsections. 

A. Uplink PD-NOMA System 

The uplink PD-NOMA transceiver model supports K 

UEs, allocated distinct power levels, transmitting using the 

same spectrum resources to a common BS. The BS 

receives the superposed signal message of K UEs denoted 

by 𝑦 and deploys SIC to detect each signal. 

𝑦 = ∑ ℎ𝑖√𝑝𝑖
𝐾
𝑖=1 𝑥𝑖 + 𝑧                      (1) 

where 𝑝𝑖 and 𝑥𝑖 are the transmit power and signal 

transmitted by the ith UE, respectively. ℎ𝑖  denotes the 

channel gain of the ith UE. Furthermore, 𝑧 associated with 

the power density 𝑁0 represents the AWGN plus the inter-

cell interference (ICI) at the BS. 

The PD-NOMA receiver considers that 𝑝1|ℎ1|2 ≥
𝑝2|ℎ2|2 ≥ ⋯ ≥ 𝑝𝐾|ℎ𝐾|2 , accordingly the optimal 

decoding order for SIC is 𝑥1, 𝑥2, ⋯ , 𝑥𝐾 . With SIC, the 

strongest UE signal 𝑥𝑖  is decoded first while observing 

interference from the other UEs [26]. Denoting by G the 

minimum power difference required to distinguish 

between the signal to be decoded and the remaining non-

decoded message signals, the necessary power constraints 

for efficient SIC in an ith UE uplink NOMA cluster can be 

expressed as 

𝑝𝑖|ℎ𝑖|2 − ∑  𝐾
𝑗=𝑖+1  𝑝𝑗|ℎ𝑗|

2
≥ 𝛤                   (2) 

The major drawback with SIC in B5G networks with 

multiple selective channels is the ICI due to cumulative 

decoding errors which increases the decoding complexity 

at the receiver side therefore limiting the cluster 

superposing bounds [27]. 
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B. Uplink SCMA System

The uplink SCMA transceiver model supports K UEs

transmitting using N Resource Elements (REs). Each UE 

assigned to a single codebook, utilizes 𝑑𝑣 < 𝑁 REs while

each RE can be accessed by 𝑑𝑓 < 𝐾  UEs. The coder

operates K symbols 𝑠 = [𝑠1, 𝑠2, ⋯ , 𝑠𝐾] ∈ 𝕄1×𝐾 in a cycle,

where every log2M-bit symbol for the kth UE maps to one 

of the length −𝑀 column vectors with 𝑑𝑣 , (𝑑𝑣 ≤ 𝑁) used

REs of sparse codeword matrix 𝐶𝑘 ∈ ℂ𝑁×𝑀, resulting into

complex codeword 𝑥𝑘 ∈ ℂ𝑁×1, 𝑘 ∈ {1, 2, ⋯ , 𝐾} . The

combined codewords from all the 𝐾  layers form the 

transmit vector, 𝐱 ∈ ℂ𝑁×1 , transmitted over N REs. The

notation 𝑑𝑣 , 𝑑𝑓  and 𝜆 = 𝐾 𝑁⁄  refers to the codebook

sparsity degree, maximum degree of user superposition on 

a given RE and the overloading factor respectively [7]. 

The N-dimensional uplink received vector is then given 

by 

𝐲 = ∑ 𝐇𝑘𝐱𝑘 + 𝐳𝐾
𝑘=1           (3) 

where 𝐲 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑁)𝑇 ,  𝐱𝑘 = (𝑥𝑘,1, 𝑥𝑘,2, ⋯ , 𝑥𝑘,𝑁) ,

𝐇𝑘 = diag (𝐡𝑘)  and 𝐡𝑘 = (ℎ𝑘,1, ⋯ , ℎ𝑘,𝑁)  is the K1

channel gain vector of UE k. The K1 vector z corresponds 

to the AWGN with variance 𝑁0.

The dominant near-optimal SCMA receiver decoding 

strategies is the MPA and its variants namely; Log-MPA 

and MaxLog-MPA [2, 9]. The expectation propagation 

algorithm (EPA) [28, 29], sphere decoding [30] and polar-

coded SCMA [31]. Recently, the proposed DL based 

detection demonstrates significant potential improvement 

in detection BER performance, reduced complexity and 

optimized computational time [7]. 

C. Uplink Hybrid PD-SCMA System

The uplink PD-SCMA transceiver model supports a sets

of 𝒰 NUs and 𝒦 FUs. Similar to the conventional SCMA, 

a PDSCMA transmitter operates L=K layers (of set ℒ ) and 

𝑁  orthogonal resource elements (REs), where 𝑁 << 𝐿 . 

Each layer utilizes 𝑑𝑣 , (𝑑𝑣 < 𝑁)  REs, thus, each layer

spreads its data over 𝑑𝑣  REs. A layer is constructed by

drawing select codewords from each UE of FU set 

𝒦, |𝒦| = 𝐾 and clustered NUset 𝒰𝐶𝐵 , (|𝒰𝐶𝐵| = 𝑈, 𝒰𝐶𝐵 ∈
𝒰) . This implies that a layer constitutes D(U+1) users 

symbols. Fig. 1 illustrates the PD-SCMA block diagram 

with L layers, N=4 REs, 𝑑𝑣 = 2 in the code-domain and D

multiplexed users in the power-domain.  

Fig. 1. PD-SCMA block with 𝐷 = 𝑈 + 1, 𝑈 ∈ 𝑈𝐶𝐵 superimposed NUs,

𝐿 layers/codebooks and 𝑁 = 4 REs. 

Under the constraint that no two layers should be 

assigned all the same RUs for an affordable complexity 

order, a system is fully loaded if 𝜆 = 𝐷 × ( 𝐿
𝑑𝑣

), where 𝜆 

denotes the overloading factor. 

At the PD-SCMA transmitter, every log2M-bit symbols 

are encoded to a length -𝑁  sparse vector resulting into 

complex codewords 𝑥𝑘,𝑐
FU = [𝑥FU𝑘,1 , ⋯ , 𝑥FU𝑘,𝑁]𝑇  and

𝑥𝑢,𝑐
NU = [𝑥NU𝑢,1 , ⋯ , 𝑥NU𝑢,𝑁]𝑇 for FUs and NUs respectively.

The vectors 𝑥𝑘,𝑐
FU and 𝑥𝑢,𝑐

NU  belongs to a finite set of

ℳ, |ℳ| = 𝑀 codewords of codebook 𝒞. A codebook can 

be utilized by a single user, (case of the conventional 

SCMA) or several users, (case as with PD-SCMA) by 

pairing users with distinct power levels.  

Consider the policies applied as defined below: 

 The PA policy 𝐩 = {𝑃𝐾,𝐶
FU , 𝑃𝑈,𝐶

NU}  is such that the

transmitter allocates 𝑃𝐾,𝐶
FU = [𝑃𝑘,𝑐

FU]
𝐾×𝐶

 power to the kth

FU on codebook 𝑐  and 𝑃𝑈,𝐶
NU = [𝑃𝑢,𝑐

NU]
𝑈×𝐶

 to the uth

NU utilizing the same codebook c. Note that 𝑃𝑢,𝑐
NU ≫

𝑃𝑘,𝑐
FU.

 The CA policy 𝐪 = {𝑄𝐾,𝐶
FU }  where 𝑄𝐾,𝐶

FU = [𝑞𝑘,𝑐
FU]

𝐾×𝐶

denote FU transmitter CA matrix. Also, [𝑞𝑘,𝑐
FU] = 1

implies that codebook c is assigned to the kth FU.

 The UC policy 𝐚 = [𝐴𝑘,𝑢
𝑐 ]

𝐾×𝑈
, where 𝐴𝑘,𝑢

𝑐 = 1

denotes that the kth FU is paired with the uth NU on

codebook c, while 𝐴𝑘,𝑢
𝑐 = 0, denotes otherwise.

Let 𝐇 = {𝐻𝑈,𝐶
NU, 𝐻𝐾,𝐶

FU } , where 𝐻𝑈,𝐶
NU = [ℎ𝑢,𝑐

NU]
𝑈×𝐶

 and

𝐻𝐾,𝐶
FU = [ℎ𝑘,𝑐

FU]
𝐾×𝐶

 denote channel-fading gains of the uth

NU  and kth FU on codebook c. The statistical channel 

coefficients are modelled as: 

ℎ𝑢,𝑐
NU = ℎ̂𝑢,𝑐

NU + 𝜀𝑢,𝑐
NU  (4) 

ℎ𝑘,𝑐
FU = ℎ̂𝑘,𝑐

FU + 𝜀𝑘,𝑐
FU      (5) 

where ℎ̂𝑢,𝑐
NU ∼ 𝒞𝒩(0, �̂�𝑢,𝑐

2 ) and ℎ̂𝑘,𝑐
FU ∼ 𝒞𝒩(0, �̂�𝑘,𝑐

2 ) are the

estimated channel gains with variances �̂�𝑢,𝑐
2  and �̂�𝑘,𝑐

2

respectively. 𝜀𝑢,𝑐
NU ∼ 𝒞𝒩(0, 𝜎𝜀

2)  and 𝜀𝑘,𝑐
FU ∼ 𝒞𝒩(0, 𝜎𝜀

2)

denote the channel estimation errors with variance 𝜎𝜀
2. It is

assumed that estimated channel gains and errors are 

uncorrelated stationary and ergodic random processes. 

Considering that each codebook is exclusively assigned to 

a single FU at each BS but re-used by NUs, the received 

signal 𝑦𝑘,𝑐
FU is given by:

𝑦𝑘,𝑐
FU = 𝑞𝑘,𝑐

FUℎ𝑘,𝑐
𝐹𝑈√𝑃𝑘,𝑐

FU𝑥𝑘,𝑐
FU + ∑ 𝐴𝑘,𝑢

𝑐 ℎ𝑢,𝑐
NU√𝑃𝑢,𝑐

NU𝑥𝑢,𝑐
NU

𝑢∈𝒰𝑐
+ 𝑧𝑘,𝑐

(6)

where 𝑥𝑘,𝑐
FU and 𝑥𝑢,𝑐

NU are the transmitted signals of the FU

and NU on codebook 𝑐, respectively, 𝒰𝑐 denotes the set of

NUs paired with FU 𝑘  on codebook 𝑐  and 𝑧𝑘,𝑐 ∼

𝒞𝒩(0, 𝜎𝑘,𝑐
2 ) is the additive white Gaussian noise power

(AWGN). The achievable throughput at the BS, 𝑟𝑢,𝑐
NU  and

𝑟𝑘,𝑐
FU are respectively given by:

𝑟𝑢,𝑐
NU = 𝐵RElog2 (1 + 𝛾𝑢,𝑐

NU)               (7) 

𝑟𝑘,𝑐
FU = 𝐵RElog2 (1 + 𝛾𝑘,𝑐

FU) (8)
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where 𝛾𝑢,𝑐
NU and 𝛾𝑘,𝑐

FU are the signal to interference and noise 

ratio (SINR) of the uth NU and kth FU on codebook c 

respectively, given by (7) and (8). The system's achievable 

sum rate of the SBS is given by: 

𝐑(𝐪, 𝐚, 𝐩) = ∑  𝐶
𝑐=1   [∑  𝐾

𝑘=1  𝑟𝑘,𝑐
FU + ∑  𝑈

𝑢=1  𝑟𝑢,𝑐
NU]      (9) 

In order to fully realize the full potential of hybrid PD-

SCMA, there is need to deploy resilient DNN based RA 

schemes for performance enhancement. At the receiver, 

joint MUD that iteratively decodes the received messages 

using log-MPA [2, 9], EPA [28, 29] in the code-domain 

and SIC in the power domain. 

III. OPTIMIZATION PROBLEM FORMULATION 

From (6) to (9), the RA problem results into a 

corresponding capacity optimization problem expressed as; 

max
𝐪,𝐚,𝐩

  𝐑(𝐪, 𝐚, 𝐩)

s.t. C1: ∑  𝐶
𝑐=1   𝑟𝑘,𝑐

FU ≥ 𝑅min
𝑘 , ∀𝑘

C2: ∑  𝐶
𝑐=1   𝑟𝑢,𝑐

FU ≥ 𝑅min
𝑢 , ∀𝑢

C3: ∑  𝐾
𝑘=1  𝑞𝑘,𝑐

FU ≤ 𝑑𝑓 , ∀𝑐

C4: ∑  𝑢∈𝒰𝑐
 𝐴𝑘,𝑢

𝑐 𝑃𝑢,𝑐
NU|ℎ𝑢,𝑐

NU|
2

≤ ℐ𝑢→𝑘
𝑐,th , ∀𝑘

C5: 𝑞𝑘,𝑐
FU ∈ (0,1), ∀𝑘, 𝑐

C6: 𝑃𝑘,𝑐
FU ≥ 0, ∀𝑘, 𝑐

C7: ∑  𝐶
𝑐=1  𝑞𝑘,𝑐

FU𝑃𝑘,𝑐
FU ≤ 𝑃max

FU , ∀𝑘

C8: 𝐴𝑘,𝑢
𝑐 𝑃𝑢,𝑐

NU|ℎ𝑢,𝑐
NU|

2
≥ 𝑞𝑘,𝑐

FU𝑃𝑘,𝑐
FU|ℎ𝑘,𝑐

FU|
2

, ∀𝑘, 𝑐, 𝑢

C9: ∑  𝑢∈𝒰𝑐
 𝐴𝑘,𝑢

𝑐 ≤ 𝐷

 (10) 

In this problem, constraints C1 and C2 set the QoS rate 

requirement to ensure guaranteed performance of the kth 

FU and uth NU. Constraint C3 limits the number of users 

multiplexed on a single RE. Constraint C4 sets the 

tolerable pairing interference on each codebook on which 

a NU is co-multiplexed with a FU. Constraint C5 

guarantees that a codebook is allocated to at most one FU. 

Constraints C6 and C7 ensure that the FU transmit power 

is non-negative and is within the maximum FU transmit 

power. The constraint C8 ensures SIC at the BS and lastly, 

C9 outlines the multiplexing bound D. However, solving 

(10) is complicated due to its mixed combinatorial nature. 

In addition, high coupling between optimization variables 

and combined computational cost encountered in CA, UP 

and PA exhaustive search for optimal EE is prohibitive. To 

address this problem, this work decomposes the 

optimization problem into three sub-problems namely; PA, 

CA and UC, considering the associated constraints and 

utilizes the proposed modified primal dual interior point 

method (mPD-IPM) to alternately solve the sub-problems. 

IV. PROPOSED PD-SCMA MODIFIED PRIMAL DUAL 

INTERIOR POINT METHOD BASED RESOURCE 

ALLOCATION 

The RA problem (10) is first decomposed into PA, CA 

and UC resource allocation sub-problems presented in the 

next sub-sections. This work proposes a modified primal 

dual interior point method (mPD-IPM) [32] to alternately 

generate near-optimal RA solutions for each sub-problem. 

These solutions are then considered as the labels for each 

stage of the DNN. The DNN is then used in the 

performance evaluation and enhancement of the proposed 

mPD-IPM algorithm. Unlike in [32], a smoothing 

approach similar to [33] is introduced to relax the PD-IPM 

parameters, guaranteeing both global and local 

convergence. 

A. Stage 1: Power Allocation. 

The starting stage of the resource allocation is the power 

allocation aimed at enhancing sum rate and the computing 

performance. The objective function of the PA sub-

problem reduces to 

𝐏𝐀: max
𝐩

  𝐑(𝐪, 𝐚, 𝐩)

 s.t. C1: ∑  𝐶
𝑐=1   𝑟𝑘,𝑐

FU ≥ 𝑅min
𝑘 , ∀𝑘

C2: ∑  𝐶
𝑐=1   𝑟𝑢,𝑐

FU ≥ 𝑅min
𝑢 , ∀𝑢

C3: 𝑃𝑘,𝑐
FU ≥ 0, ∀𝑘, 𝑐

C4: ∑  𝐶
𝑐=1  𝑞𝑘,𝑐

FU𝑃𝑘,𝑐
FU ≤ 𝑃max

FU , ∀𝑘

C5: 𝐴𝑘,𝑢
𝑐 𝑃𝑢,𝑐

NU|ℎ𝑢,𝑐
NU|

2
≥ 𝑞𝑘,𝑐

FU𝑃𝑘,𝑐
FU|ℎ𝑘,𝑐

FU|
2

∀𝑘, 𝑐, 𝑢

      (11) 

where C1 to C5 are as described above.  
The input data to the network is the output of the mPD-

IPM which considers the channel gains (ℎ𝑘,𝑐
FU  and ℎ𝑢,𝑐

NU) 

and the distance from the BS (𝑠𝑘 and 𝑠𝑢) for each FUs and 
NUs respectively as the metrics in its computation of the 
optimal PA, while the CA and UC is fixed. The mPD-IPM 
is characterized with iterating within feasible region and 
thus guarantees faster convergence rate to an optimal 
solution. The near-optimal power allocation of mPD-IPM 

algorithm is then given by 𝐩 = {𝑃𝐾,𝐶
FU , 𝑃𝑈,𝐶

NU}. 

𝑃𝐾,𝐶
FU = [𝑃𝑘,𝑐

FU]
𝐾×𝐶

                       (12) 

B. Stage 2: Codebook Assignment. 

The codebook assignment (CA) forms the second stage 
of the RA to further improve the overall capacity. Based 
on the allocated powers in Stage IV-A, the corresponding 
codebook assignment to FUs sub-problem can be given as 

𝐂𝐀: max
𝐪

  𝐑(𝐪, 𝐚, 𝐩)

 s.t. C1: ∑  𝐶
𝑐=1  𝑟𝑘,𝑐

FU ≥ 𝑅min
𝑘 , ∀𝑘

C2: ∑  𝐾
𝑘=1  𝑞𝑘,𝑐

FU ≤ 𝑑𝑓 , ∀𝑐

C3: 𝑞𝑘,𝑐
FU ∈ (0,1), ∀𝑘, 𝑐

            (13) 

Similar to the PA sub-problem, the CA sub-problem 

utilizes the proposed mPD-IPM algorithm to generate the 

near-optimal codebook assignment matching to the FUs 

given by vector 𝐪 . The mPD-IPM utilizes the channel 

gains 𝐡 and the allocated powers 𝐩 to generate output 𝐪. 

𝐪 = {𝑄𝐾,𝐶
FU } = [𝑞𝑘,𝑐

FU]
𝐾×𝐶

                    (14) 

Algorithm 1 The Proposed mPD-IPM Resource Allocation 

Algorithm 

1: Initialization: Initialize the sets: 𝒰, 𝒦, 𝒞 and ℒ.  

2: Initialize the set of NU and FU distances to the BS 𝒮. 

3: Initialize the set of NU and FU channel gains H. 
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4: Stage 1: Power Allocation 

5: Initialize equal powers to FUs set and equal powers to NUs 

set. 
6: Initialize maximum tolerance 𝜖, Maximum iterations 𝑻 and 

iterations number 𝜏. 
7: while |𝐹𝜏+1(𝐩) − 𝐹𝜏(𝐩) | > 𝜖 or 𝜏 ≤ 𝑻 do 

8:      Solve (11) by PD-IPM 

9:      Update 𝐩 =  {𝑃𝑢,𝑐
NU, 𝑃𝑘,𝑐

FU}, ∀𝑘, 𝑢 

10:       𝜏 = 𝜏 + 1 

11: end while 

12: Output: p given by eqn (12). 

13: Stage 2: Codebook Assignment 

14: Initialize 𝑃𝑘,𝑐
FU , ∀𝑘 obtained in Stage 1. 

15: Initialize mother codebook  𝐌𝐂𝐾×𝑁 . 

16: for 𝑐 = 1, ⋯ , 𝐶 do 

17:     for 𝑘 = 1, ⋯ , 𝐾 do 

18:         while ∑  𝐾
𝑘=1   𝑞𝑘,𝑐

FU ≤ 𝑑𝑓 do 

19:            Solve (13) by PD-IPM 

20:            Update 𝐪 = {𝑄𝐾,𝐶
FU }, ∀𝑘 

21:            𝑘 = 𝑘 + 1 , 𝑐 = 𝑐 + 1. 

22:        end while 

23:       end for 

24: end for 

25: Output: q given by eqn. (14). 

26: Stage 3: User Clustering 

27: Initialize 𝑃𝑘,c
FU, ∀𝑘 and  𝑃𝑢,c

NU, ∀𝑐 obtained in Stage 1. 

28: Initialize the interference threshold ℐ𝑢→𝑘
𝑐,th , ∀𝑘, 𝑢 

29: Initialize the multiplexing bound 𝐷. 

30: for 𝑐 = 1, ⋯ , 𝐶 do 

31:     for 𝑢 = 1, ⋯ , 𝑈 do 

32:          while  ∑  𝑢∈𝒰𝑐
 𝐴𝑘,𝑢

𝑐 𝑃𝑢,𝑐
NU|ℎ𝑢,𝑐

NU|
2

≤ ℐ𝑢→𝑘
𝑐,th , ∀𝑘  do 

33:              while  |𝐴𝑘,𝑢
𝑐  𝑃𝑢,𝑐

NU|  < 𝐷 do 

34:              Solve (15) by PD-IPM using the metric (16). 

35:              Update 𝐚 =  [𝐴𝑘,𝑢
𝑐 ]

𝐾×𝑈
 

36:              𝑘 = 𝑘 + 1 , 𝑐 = 𝑐 + 1, 𝑢 = 𝑢 + 1.  

37:             end while 

38:          end while 

39:      end for 

40: end for 

41: Output: a given by eqn. (17). 

C. Stage 3: User Clustering. 

The last stage of the PD-SCMA RA is the user 

clustering (UC) which basically allows overloading by 

pairing NUs to the FUs assigned codebooks. This is 

achieved by clustering NUs with distinct powers for 

purposes of spectrum sharing, subject to an acceptable 

maximum interference threshold to guarantee SIC. Based 

on the allocated powers and the FUs codebook assignment 

from stage IV-A and IV-B respectively, the corresponding 

UC problem can now be given as; 

UC: max
𝐚

  𝐑(𝐪, 𝐚, 𝐩)

s.t. C1: ∑  𝐶
𝑐=1   𝑟𝑘,𝑐

FU ≥ 𝑅min
𝑘 , ∀𝑘

C2: ∑  𝑢∈𝒰𝑐
 𝐴𝑘,𝑢

𝑐 𝑃𝑢,𝑐
NU|ℎ𝑢,𝑐

NU|
2

≤ ℐ𝑢→𝑘
𝑐,th , ∀𝑘

C3: 𝐴𝑘,𝑢
𝑐 𝑃𝑢,𝑐

NU|ℎ𝑢,𝑐
NU|

2
≥ 𝑞𝑘,𝑐

FU𝑃𝑘,𝑐
FU|ℎ𝑘,𝑐

FU|
2

∀𝑘, 𝑐, 𝑢
C4: ∑  𝑢∈𝒰𝑐

 𝐴𝑘,𝑢
𝑐 ≤ 𝐷

       (15) 

In order to compute the optimal user clustering (UC), 

the UC input data-set to the mPD-IPM consisting of 
transmit powers, channel gains, interference threshold 

ℐ𝑢→𝑘
𝑐,𝑡ℎ

 and the optimal cluster formation is generated by the 

mPD-IPM. The mPD -IPM UC is based on maximizing the 

channel quality metric difference denoted by 𝜒𝑚,𝑘
𝑐  [2] 

given by 

𝜒𝑚,𝑘
𝑐 = 𝛿(max(𝜃𝐾×𝑀), min(𝐈min

𝑐 ))              (16) 

The output of the mPD-IPM is then given as a: 

𝐚 = [𝐴𝑘,𝑢
𝑐 ]

𝐾×𝑈
                         (17) 

The mPD-IPM exhibits the merit of guaranteeing faster 
ergodic convergence rates. The detailed complete mPD-
IPM based RA is shown in Algorithm 1. The PD-IPM for 

nonlinear programming and its proof of convergence 
analysis is detailed in [34]. 

V. PROPOSED DEEP NEURAL NETWORK BASED 

RESOURCE ALLOCATION 

The proposed DNN-mPD-IPM resource allocation 

workflow strategy is a 3 -stage process; power allocation, 
codebook allocation and user clustering as illustrated in 
Fig. 2. The DNN network consists of one input layer, four 
hidden layers and one output layer as illustrated in Fig. 2 

(a). The four hidden layers have 30012080 and 80 neurons, 
respectively [35]. The neuron receives information from 
the neuron of the previous layer. At each DNN-RA stage, 
the generated near optimal mPD-IPM RA solutions 

namely; power allocation 𝐩, codebook assignment 𝐪 and 

user clustering a obtained respectively in (12), (14) and (17) 
are regarded as the DNN labels. The DNN model is then 
trained to approximate the label RA, and hence improved 
computing performance. 

A. Stage 1: DNN - Power Allocation (DNN-PA). 

At the DNN-PA stage, the DNN model is trained to 
approximate the mPD-IPM power allocation. The DNN-
PA described in stage 1 of Fig. 2 (b) outlines the DNN 
structure development, data initialization, DNN model 

training, testing and sum-rate as the output. Denote by �̂�𝑡 

and �̂�𝑡+1 respectively the set of output powers of the DNN 

at iteration t and t+1, respectively. The relation between �̂�𝑡 

and �̂�𝑡+1 is given by the mapping equation (18): 

�̂�𝑡+1 = 𝜖𝑡(�̂�𝑡 , 𝐩)                       (18) 

where t and 𝜖𝑡  denotes the iteration number and the 

mapping. 𝐩 denotes the label powers generated from the 

mPD-IPM (12).  
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Fig. 2. DNN aided resource allocation mechanism. 

The mapping from 𝐩 and initialization �̂�0  to the final

output �̂�𝑡 given by the transmission expression (19):

�̂�𝑡 = 𝑓𝑡(𝑓𝑡−1(⋯ 𝑓1(𝑓0(�̂�0, 𝐩), 𝐩) ⋯ , 𝐩), 𝐩)     (19) 

requires to be accurately approximated by an activation 

function and can be evaluated by 

max|�̂�𝑡 − 𝐩|2  (20) 

The output of the mPD-IPM is the optimized PAs with 

the total system sum-rate 𝐑new − 𝐑old <105 or a number

of iterations >1000, as the termination condition. The 

DNN PA network model utilizes the MSE loss function 

given by 

min
�̂�

  ∥ �̂� − arg max
𝐏

𝐑(𝐐, 𝐀, 𝐏) ∥.            (21) 

In each hidden layer network, ReLU activation function 

described in (22) is applied since it saves and maps the 

features of the activated neurons besides mitigating 

gradient dispersion. The ith training samples are the tuples 

(ℎ𝑘,𝑐
FU,𝑡 , 𝑠𝑘 , 𝑃𝑘,𝑐

FU) and (ℎ𝑢,𝑐
NU,𝑡 , 𝑠𝑢 , 𝑃𝑢,𝑐

NU). The process is then

executed many times to generate the validation set and the 

training set. The number of the validation set is smaller 

than the training set. 

ReLu(𝑥) = {
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

(22) 

At the training stage, in order to optimize the DNN 

weights, the RMSprop algorithm [36] is used with decay 

rate set at 0.9. The batch size and the learning rate are 

determined using cross-validation. Optimization of the 

weights aims to minimize the loss function which is the 

MSE given in (21). 

The testing stage involves testing the robustness of the 

trained network. The validation set of label powers 

obtained by mPD-IPM are passed to the DNN network to 

get the output. Then, the system capacity is calculated 

using the label powers and the output powers. 

B. Stage 2: DNN - Codebook Assignment (DNN-CA).

Similar to the PA sub-problem, the CA sub-problem

utilizes the generated mPD-IPM CA solution 𝐪 obtained in 

(14) as the codebook assignment input labels to the DNN

scheme. The DNN-CA illustrated in Stage 2 of Fig. 2 (b)

is evaluated as follows; The relation between �̂�𝑡 and �̂�𝑡+1

is given by the mapping equation (23) while the

transmission expression is given by (24).

�̂�𝑡+1 = 𝜖𝑡(�̂�𝑡 , 𝐪)   (23) 

�̂�𝑡 = 𝑓𝑡(𝑓𝑡−1(⋯ 𝑓1(𝑓0(�̂�0, 𝐪), 𝐪) ⋯ , 𝐪), 𝐪)      (24) 

In this DNN-CA stage, we use ReLU activation function 

(22) in all but the last layer which uses a sigmoid activation

function (25):

𝑓sig(𝑥) =
1

1+𝑒−𝑥𝑝−1  (25) 

At the training stage, since CA is a binary classification 

problem, the binary cross-entropy loss function is 

employed. The loss function Loss (W, b) is the binary 

cross-entropy of the DNN output �̂�  and the mPD-IPM 

output 𝐪 given as 

Loss (𝑊, 𝑏) =
1

𝐾𝐽
∑  𝐾𝐽

𝑖 − (1 − 𝐪(𝑖))ln (1 − �̂�(𝑖)) + 𝐪(𝑖)ln �̂�(𝑖)  (26)

At the testing stage, the output of the DNN is converted 

to ones and zeros (with and without RE allocation) subject 

to C2 and C3 of the CA problem (13) to give output �̂�. 

Algorithm 2 DNN approaching mPD-IPM Resource 

allocation 

1: Initialization:  Initialize the DNN structure; i/o layers, 

no. of hidden layers, weights 𝑤 and bias 𝑏. 
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2:      for 𝑚 =  1 to training epoch do 

3:                 for 𝑛 =  1 to num batch do 

4:            DNN Model Training 

5:           Stage 1: DNN training to approximate mPD-

IPM     power allocation by minimizing (21). 

6:           Stage 2: DNN training to approximate mPD-

IPM codebook assignment by minimizing (26). 

7:          Stage 3: DNN training to approximate mPD-

IPM user clustering by minimizing (30). 

8:         end for 

9:      end for 

10: DNN Data Testing: Normalizing outputs for each 

sub problem; 𝐩 = {{𝑃𝑘,c
FU}

1

𝐾
, {𝑃𝑢,c

NU}
1

𝑈
} , 𝐪 = {𝑞𝑘,c

FU} ,   

and 𝐚 = {𝐴𝑘,u
𝑐 }  

 
 

C. Stage 3: DNN - User Clustering (DNN-UC). 

The DNN-UC model computes the optimal user 

clustering (UC), through training the data-set of the 

transmit powers, FU codebook assignment and the optimal 

cluster formation generated by the mPD-IPM as shown in 

Stage 3 of Fig. 2 (b). The output a of the mPD-IPM 

obtained in (17) is considered as the UC labels/input to the 

DNN network. Similar to stages V-A and V-B, the DNN 

approximates the UC of the mPD-IPM within the 

acceptable multiplexing bounds in each codebook and 

gives the output �̂�. The relation between �̂�𝑡  and �̂�𝑡+1  is 

given by the mapping (27) while the transmission 

expression is gives by (28): 

�̂�𝑡+1 = 𝜖𝑡(�̂�𝑡 , 𝐚)                        (27) 

�̂�𝑡 = 𝑓𝑡(𝑓𝑡−1(⋯ 𝑓1(𝑓0(�̂�0, 𝐚), 𝐚) ⋯ , 𝐚), 𝐚)         (28) 

At the training stage, the learning process is formalized 

as a minimization of the cost function. To train the 

proposed DNN-UC, stochastic gradient descent is selected 

to update the weights and biases iteratively via back-

propagation as follows; 

𝜃𝜏+1 = 𝜃𝜏 − 𝜂∇𝜃𝐉(𝜃)                     (29) 

where 𝜃𝜏 , 𝜏, 𝜂, ∇𝜃  and 𝐉(𝜃)  respectively denote the 

parameter to be optimized, the iteration number, the scalar-

valued step size, the derivative with respect to 𝜃 and the 

MSE cost function expressed as 

𝐉(𝜃) ⇒ MSE =
1

𝐷
∑  𝐷

𝑖=1   (𝐚 − �̂�)2            (30) 

Generally, Algorithm 2 outlines the DNN model 

training to approximate the mPD-IPM RA for the three 

sub-problems. Further, the overall alternate DNN aided 

RA (DNN-mPD-IPM) is presented in Algorithm 3. 

Algorithm 3 The Alternate DNN aided mPD-IPM RA (DNN-

mPD-IPM) 

1: Repeat:   

2: Step 1: DNN - Power Allocation; Update the NU and 

FU power allocation policy P with with random CA Q. 

3:         Step 2: DNN - Codebook Assignment; Update the FU 

codebook assignment policy Q with the PA P obtained 

in Step 1. 

4: Step 3: DNN - User Clustering; Update the NU to FU 

user pairing in a codebook policy A with the PA P and 

CA Q obtained in Step 1 and Step 2, respectively. 

5: Until Convergence 

VI. CONVERGENCE AND COMPLEXITY ANALYSIS 

A. Convergence Analysis 

The convergence of Algorithm 3 is influenced by both 

DNN data generation via mPD-IPM Algorithm 1 and the 

DNN training Algorithm 2. Algorithm 1 generates the 

labels using the mPD-IPM for the three sub-problems, PA, 

CA and UC. Similar to PD-IPM [34], mPD-IPM 

guarantees convergence of O(1/k) in achieving the near-

optimal solution for the PA, CA and UC sub-problems. 

After several PA, CA and UC operations in solving sub-

problems (11), (13) and (15), respectively, the structure of 

the optimal resource allocation changes is presented as 

𝐹0 ⇒ 𝐹1 ⇒ 𝐹2 ⇒ ⋯ ⇒ 𝐹𝑙 ⇒ ⋯              (31) 

It is required that the sum-rate problem ensures a 

solution within the given constraints in (10). The overall 

system sum rate increases after each match operation 𝑙. 

𝛶𝑙−1
𝑙  = 𝐑total (𝐹𝑙) − 𝐑total(𝐹𝑙−1)               (32) 

The PA, CA and UC are bounded by maximum power, 

number of available codebooks and the multiplexing 

capacity bound, 𝐷 respectively. In addition, the total sum 

rate has an upper bound in the hybrid PD-SCMA system 

since spectrum resources are limited and hence Algorithm 

1 converges after optimal RA. Besides, we will show in 

Section VII that after a number of iterations, the MSE 

value flattens and the DNN-mPD-IPM Algorithm 3 

converges to a fixed value. 

B. Computational Complexity Analysis 

Following the complexity analysis of PD-IPM [37], the 

complexity of mPD-IPM is outlined. It can be shown that 

for the small update method with accuracy parameter 𝜀 >
0, threshold parameter 𝜏 ≥ 1 and fixed barrier parameter 

𝜃  usually set at 0 < 𝜓 < 1 , the mPD-IPM algorithm 

requires 𝒪 (√𝑛log 
𝑛

𝜀
). The output gives an  approximate 

solution of convex quantization optimization. After 

derivations considering the PA, CA and UC sub-problem 

dimensions, the computational complexity of mPD-IPM 

can be given as, 

𝒪 (2𝐾log 
𝐾2

𝜀
+ 𝑈log 

𝑈2

𝜀
+ √𝑈𝐶log 

𝑈𝐶

𝜀
)         (33) 

The computational complexity of Algorithm 3 depends 

on both DNN data generation via mPD-IPM Algorithm 1 

and the DNN training Algorithm 2. Generally, floating-

point operations (FLOPs) are used to analyze the time 

complexity of a DNN [36]. For each fully connected layer 

of DNN without bias, the number of FLOPs is given by: 

FLOPs = (2𝐼1 − 1)𝑂𝑙                   (34) 

where l, Il and Ol respectively denote the index of the 

network layer, input dimension of the lth layer and output 

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 14, No. 1, 2025

8



dimension of the lth layer. For a fully connected DNN 

layer with bias, the number of FLOPs is given as 

FLOPs = 2𝐼1𝑂𝑙                        (35) 

Consequently, the number of FLOPs for all fully 

connected DNN layer in this model is given as 

FLOPs= 2 ∑  𝐿+1
𝑙=1   𝐼1𝑂𝑙

= 2(𝑇𝑁𝑀ℎ1 + ℎ1ℎ2 + ℎ2ℎ3 + ℎ3ℎ4

      (36) 

where L and T denote the number of network layers and 

the number of validation samples, respectively. The PA 

sub-problem input and output layers have dimensions of 

𝐾 ×  𝐾 and 𝑈 × 𝑈 for FUs and NUs respectively. The CA 

sub-problem has input and output layers with dimensions 

of 𝐾 × 𝐶  and lastly, the UC problem input and output 

layers dimensions is 𝑈 × 𝐶. The number of neurons in the 

four hidden layers are denoted by ℎ1, ℎ2, ℎ3  and ℎ4 . 

Considering the input/output layer matrix dimensions of 

the CA, UC and PA sub-problems for FUs and NUs, the 

complexity comparison between DNN-mPD-IPM and 

mPD-IPM resource allocation can be given as follows; 

𝒪(4(𝑇 ⋅ 𝐾 ⋅ 𝐾 ⋅ ℎ1 + ℎ1 ⋅ ℎ2 + ℎ2 ⋅ ℎ3 + ℎ3 ⋅ ℎ4

+𝑇 ⋅ 𝐾 ⋅ 𝐾 ⋅ ℎ4)

 +2(𝑇 ⋅ 𝑈 ⋅ 𝑈 ⋅ ℎ1 + ℎ1 ⋅ ℎ2 + ℎ2 ⋅ ℎ3 + ℎ3 ⋅ ℎ4

+𝑇 ⋅ 𝑈 ⋅ 𝑈 ⋅ ℎ4)

 + 2(𝑇 ⋅ 𝑈 ⋅ 𝐶 ⋅ ℎ1 + ℎ1 ⋅ ℎ2 + ℎ2 ⋅ ℎ3 + ℎ3 ⋅ ℎ4

+𝑇 ⋅ 𝑈 ⋅ 𝐶 ⋅ ℎ4))

    (37) 

From (37), the proposed DNN-mPD-IPM exhibits 

significant lower computation complexity than mPD-IPM 

RA model. 

VII. CONVERGENCE AND COMPLEXITY ANALYSIS 

A. Simulation Parameters Selection 

The performance evaluation and comparison of the 

proposed mPD-IPM, proposed DNN-mPD-IPM and 

random resource allocation algorithms is investigated. In 

the random RA, the BS power is evenly distributed to the 

UEs, codebooks assigned to FUs and the NUs paired to 

FUs in a random manner. The detailed system parameters 

and assumptions for the uplink PDSCMA are presented in 

Table II [2, 9] while the DNN model simulation 

parameters for the uplink PD-SCMA system are presented 

in Table III. 

In order to evaluate the loss function performance, the 

batch size 32, 64, 96 and 128 on the validation set is 

adopted. 

   

Parameters Symbol Values 
Minimum FU QoS 𝑅min 0.01bps/Hz 

Error variance 𝜎𝜀
2 0.01 

RE Bandwidth 𝐵𝑟𝑢 10𝑀𝐻𝑧 

Number of FUs 𝐾 4 − 24 

Number of NUs per layer 𝑈 1 − 6 

Number of Codebooks 𝐶(𝑁, 𝑑𝑣) 
𝑁!

(𝑁 − 𝑑𝑣)! 𝑑𝑣!
 

Number of REs 𝑁 4 − 6 

Signal to Noise Ratio 𝑆𝑁𝑅 32𝑑𝐵 

Noise variance 𝜎𝑘,𝑛
2  −125𝑑𝐵𝑚 

Distance between NUs and BS 𝑑𝑁𝑈 20 − 40(𝑚) 

Distance between FUs and BS 𝑑𝐹𝑈 100 − 150(𝑚) 

BS peak power 𝑃 43𝑑𝐵𝑚 

Interference threshold ℐ𝑘→𝑚
𝑐  10−5.5 W 

    

Parameters Values 

Training data 140000 

Validation data 40000 

Hidden layers 4 

Number of neurons in a layer 300/120/80/80 

Activation functions ReLU/Sigmoid 

Loss functions MSE/Binary Cross-Entropy 

Batch size 64 

Training / Validation Epoch 300 

Learning rate 0.001 

Decay rate 0.9 

 
It is observed in Fig. 3 that the DNN converges within 

300 iterations. The convergence rate reduces as the batch 

size enlarges. In this model, the smallest MSE for the 

validation set is arrived at a batch size of 64, hence its 

selected. Very small and very large batch sizes make the 

learning process noisier and fluctuating, essentially 

extending the time it takes the algorithm to converge [36]. 

Thus it can be observed that below 64, the MSE 

performance reduces due to noise. Furthermore, the 

learning rate affects the convergence on the training and 

validation set. Fig. 4 presents the system MSE system with 

respect to the number of iterations. A higher learning rate 

causes the NN to learn faster while a very small learning 

rate results to the NN falling into a local optimum. From 

Fig. 4, beyond 300 iterations, the MSE stabilizes and when 

the learning rate is 0.001, the MSE becomes the smallest. 

The performance drops beyond this rate. These parameters 

are hence adopted for this DNN model application. 

 
Fig. 3. MSE versus epoch for different validation batch sizes. 

 
Fig. 4. MSE versus epoch for different learning rates. 
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TABLE II: SIMULATION PARAMETERS

TABLE III: DNN MODEL SIMULATION PARAMETERS



 
Fig. 5. The system capacity versus the number of FUs, K. 

 
Fig. 6. The system capacity versus the number of NUs, U. 

 

B. Capacity Performance 

In Fig. 5, the system capacity versus the number of FUs 

for different algorithms is presented. In this performance 

analysis, the proposed DNN-mPD-IPM algorithm is 

evaluated and compared with the mPD-IPM, cross-layer 

codebook allocation [25] and random RA algorithms with 

U=1 multiplexed NUs in a codebook and, also compared 

with SCMA, which basically it is a PD-SCMA with U=0. 

In all the schemes, the system capacity increases with 

increasing number of FUs in the system. Besides, it is 

observed that the mPD-IPM algorithm achieves a higher 

system capacity compared to the rest of the schemes. The 

proposed combined DNN-mPD-IPM algorithm realizes a 

close approximation to the mPD-IPM, inevitably with less 

computational time. Besides, DNN-mPD-IPM RA 

algorithm enhances the efficiency gain of the hybrid PD-

SCMA compared to the other considered schemes. The 

equal PA, random CA and UC scheme performs the least 

due to inefficient resource utilization associated. 

The uplink PD-SCMA capacity performance for the 

proposed DNN-mPD-IPM vs the number of paired NUs U 

in a codebook is presented in Fig. 6 for diverse number of 

codebooks. As the number of NUs, U grows, the system 

capacity increases to a maximum value, beyond which, 

pairing additional NUs collapses the performance as a 

result of the aggravated interference in the codebook and 

complexity in SIC decoding. It is observed that using few 

codebooks, as shown with C=6, a larger number of NUs U 

can be paired with minimal performance deterioration 

unlike for higher number of codebooks, experiencing 

much more interference. 

The impact of the FUs minimum QoS Rmin on the system 

capacity at different number of codebooks is presented in 

Fig. 7. The performance analysis is done with the number 

of NUs clustered in a codebook, U=4. At C=6, the system 

capacity steadily decreases with increase in the minimum 

QoS requirements of FUs Rmin. As number of codebooks 

used C increases (C=12; C=24), the system capacity 

steeply nosedives with increase in Rmin. Additional FUs 

with inadequate channel conditions in the system require 

enhanced power and codebook resources in order to 

satisfactorily meet the minimum QoS requirements. 

 
Fig. 7. The system capacity versus Rmin for the FUs with U=4 for 

different number of codebooks. 

C. Computing Performance 

Fig. 8 presents a comparison of the execution times for 

different PD-SCMA resource allocation schemes with a 

fixed number of NUs per codebook and fixed number of 

codebooks at U=2 and C=6 respectively. It is observed that 

mPD-IPM algorithm has a higher execution time due to the 

increased resource exchanges iterations before 

convergence. The cross-layer codebook allocation scheme 

proposed in [25] with U=2 encounters twice the execution 

time of SCMA with U=0. The proposed DNN-mPD-IPM 

that learns to approximate the proposed mPD-IPM has an 

execution time that is approximately 70%  lower than 

mPD-IPM. 

 
Fig. 8. Execution time for different RA schemes. 

Fig. 9 shows a comparison of the execution times in a 
DNN-mPD-IPM aided PD-SCMA resource allocation 
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with varied number of the clustered NUs, U and the 
number of codebooks fixed at C=6. It is observed that as 
the number of clustered NUs increases, the execution time 

grows exponentially. Since a PD-SCMA with 𝑈 = 0  is 

equivalent to a SCMA, then the execution time is lower as 
the element of user clustering is eliminated. Besides, 
additive codebooks, user clustering and the resulting 
interference computations drastically increases the 
execution time. 

 
Fig. 9. Execution time for the RA in the uplink PD-SCMA with 

different number of paired NUs, U. 

VIII. CONCLUSION 

The formulated MINLP capacity optimization problem 
for uplink PD-SCMA system is decomposed into CA, UC 
and PA sub-problems. This work proposes two resource 
allocation schemes namely, mPD-IPM and DNN-mPD-

IPM to enhance system capacity, computational efficiency 
and convergence performance. Hybrid NOMA systems, 
which combine multiple access schemes, introduce 
additional complexity in resource allocation. The 

interaction between different access schemes can 
complicate the deep learning model's ability to make 
accurate predictions and require significant computational 
resources and time for training. Additionally, Hybrid 

NOMA systems often operate in highly dynamic 
environments with rapidly changing conditions, which can 
make it difficult for deep learning models to adapt in real-
time. The proposed schemes generally improve the system 
performance hence can be adopted in overloaded systems 

as compared to generic resource allocation schemes. 
However, further work is recommended in exploring an 
optimal multi-user detection scheme for such an 
overloaded system in order to fully realize the benefits of 

the hybrid NOMA. Moreover, further exploratory research 
on the application of the deep learning models for 
dynamically changing channel environments and 
diversified devices needs is required. Besides, other ML 
algorithms such as LSTM and CNN should be considered 

for RA in hybrid NOMA for performance evaluation 
purposes. 
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