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Abstract—This paper presents a promising Deep-Learning 

(DL) approach for accurate symbol detection in a slow 

Frequency Hopping (SFH) wireless communication System 

under a Narrow Band (NB) multipath channel fading. A 

feedforward neural network with three layers of input, 

hidden, and output was employed for deep learning. The 

neural network is designed to take 80 features as input, 

representing the received signal samples at the receiver. The 

neural network is trained to anticipate the transmitted 

symbol based on the provided training dataset, utilizing 

different modulation techniques, including Binary Phase 

Shift Keying (BPSK), Quadrature Phase Shift Keying 

(QPSK), 8-PSK, and 16-PSK. Additionally, computer 

simulations are conducted to verify the effectiveness of the 

proposed method across various modulation schemes. The 

generated training loss and validation loss curves confirmed 

the ability of the receiver to learn. 

Index Terms—categorical cross-entropy loss, channel gains, 

confusion matrix machine learning, frequency hopping, loss 

function, Narrow Band (NB) multipath channel, neural 

network,  

I. INTRODUCTION 

Wireless networks have become an essential part of 
modern communication infrastructure. Wireless networks 
provide vital services and play an important role in 
improving the quality of life. They are currently crucial 
drivers of Internet-of-Things (IoT) applications in a wide 
range of sectors and industries, whether for military 
purposes or civilian purposes, which may include health 
care, manufacturing, smart cities, transportation, and 
intelligent anticipating and responding to natural disasters 
[1]. In IoT network, information is collected from remote 
sensors and devices and sent to a central unit for 
processing over a wireless network. Despite the 
widespread prevalence of wireless networks, they face 
critical security threats, with radio-jamming attacks being 
the most significant threat. Low-cost devices such as 
Software-Defined Radio (SDR) can be utilized to perform 
jamming by emitting high radiation energy on the same 
channel used by the legitimate signal [2]. Jamming attacks 
make it difficult for wireless devices on the receiving end 

to retrieve the transmitted information from the legitimate 
signal that has been jammed. 

Different anti-jamming techniques have been proposed 
to mitigate the impact of physic-layer jamming on wireless 
networks [3–6]. These techniques can be classified into 
four categories: coding using orthogonal pseudo-random 
codes to improve Signal-to-Interference Ratio (SINR), 
power control by optimizing the transmitted, space 
diversity using multi-antenna signal processing, and 
spreading the signal in the frequency domain [3]. 

Spread spectrum techniques such as Frequency 
Hopping (FH) and Direct Sequence (DS) were employed 
in commercial wireless communications to reduce the 
impact of jamming [4]. However, some jamming 
techniques can recognize the spreading sequence from the 
cyclostationary behavior of the transmitted signal, leading 
to the complete jamming of the legitimate signal. To 
overcome this issue, the anti-jamming scheme in [4] 
utilized a secret shared code to create a varying spreading 
sequence. Compared to the DS spread spectrum, the FH 
spreading spectrum scheme is more immune to narrow-
band interference but has less implementation complexity 
than the DS spread spectrum [5]. FH-based wireless 
communications provide robustness against frequency-
selective fading in millimeter-wave cellular 
communications [6]. 

Furthermore, FH spread spectrum communication is 
appropriate for IoT applications due to its flexibility in 
handling dense wireless networks, as in the case of the IoT 
paradigm. A Long-Range FH (LR-FH) scheme was 
proposed in [7] to handle distant communications, such as 
satellite-linked IoT devices. An overview and performance 
analysis for LR-FH were presented in [8]. The result of the 
study demonstrated that the LR-FH-based wireless 
network has significant flexibility for expansion and 
growth. However, it comes at the expense of capacity for 
each device connected to the network. Recently, the FH 
spread spectrum has been deployed to enable a single 
communication system to provide radar and 
communication tasks simultaneously [9]. Identifying the 
Channel State Information (CSI) and hopping parameters 
such as hopping sequences, hopping frequencies, and 
hopping rates is crucial to accurately recover the data 
symbol from the received signal in FH-based wireless 
networks. Therefore, various signal detection and 
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frequency hopping parameter estimation schemes have 
been proposed [10–17]. 

The article in [10] proposed a joint signal parameter 
estimation technique for FH-based communication with 
M-ary Frequency Shift Keying (MFSK). Also, the 
proposed scheme employs a Maximum Likelihood 
Estimation (MLE) along with a Smooth Pseudo-Wigner–
Ville Distribution (SPWVD) to estimate hopping 
parameters. An adaptive smoothed Wigner Ville does not 
require any former experience of the signal parameters 
since the kernel parameters can be identified from the 
signal features [11]. Despite the Wigner–Ville distribution 
offering a significant degree of resolution in both time and 
frequency, its computational complexity is high. 

To enhance the estimate of signal parameters under low 
Signal-to-Noise (SNR) scenarios, authors in [12] 
developed a frequency hopping spectrum estimation 
scheme based on a sparse Bayesian approach. The 
approach in [12] involves partitioning the received signal 
into overlap measurements; the Sparse Bayesian Learning 
(SBL) approach was used to exploit the frequency hopping 
sequence through statistical methods. Based on Space-
time Frequency Analysis (STFA) and Matrix Joint 
Diagonalization (JDM), a blind FH signal parameter 
estimation algorithm was presented in [13]. Results show 
that under low SNR as -4 dB, the proposed scheme was 
able to estimate hop period, hop start time, hop end time, 
and frequency hopping, where the frequency predicted 
with an accuracy reaches 73.26%; the estimation accuracy 
can reach 97.374% at an SNR of 5dB. The computational 
complexity of STFA is acceptable. However, the STFA 
can only satisfy the high accuracy requirement for time and 
frequency domains at a different time [14]. 

Energy detection-based FHSS signal detection was 
proposed in [15–17]. The proposed signal detection 
method in [17] uses the cross-correlation between the 
frequency-domain noisy-received signals to extract the 
decision statistic for energy detection; however, the 
adopted method in [17] cannot address the signal detection 
for slow-frequency hopping systems. In Unmanned Aerial 
Vehicles (UAVs), frequency hopping is used for data 
transmission and control [18]. The paper in [18] presented 
an adaptive noise-threshold calculation for frequency 
hopping signal detection for UAVs. For drones, a 
compressive sampling method that comprises frequency 
hopping signal spectrum extraction and soft detection was 
proposed in [19] to address the detection of FH-based 
Radio Control (RC) signals. 

Machine Learning (ML) has demonstrated great 
potential in wireless networks [20]. ML can be utilized in 
two different ways. Firstly, ML can be employed directly 
to improve the performance of specific task modules in a 
wireless network, such as modulation, error detection and 
correction, channel estimation, and signal detection. In the 
second way, the ML can be employed as an End-to-End 
(E2E) system. In the E2E system, the transmission and 
reception modules are replaced with ML. Employing ML 
in a communication system can significantly improve the 
system's overall efficiency [20]. 

Adopting a Short-Time Fourier Transform (STFT) to 
acquire the signal spectrogram for FH signal detection was 
presented in [21] under SNR and interference. A Deep 

Learning (DL) image processing algorithm was combined 
with signal estimation and detection to reduce the 
estimation error. Deep learning using neural networks was 
adopted in [22–28] for signal detection and channel 
parameter estimation. In [22], a hybrid Convolution 
Neural Network (CNN) and Recurrent Neural Network 
(RNN) were used for FH signal detection under unknown 
hopping rates to mitigate problems caused by the lack of 
time-frequency resolution and spectral leakage. Using 
CNN, the existence of the frequency hopping signal was 
presented in [23]. However, the proposed scheme in [23] 
could not identify the hopping frequencies [24]. 

An intelligent anti-jamming receiver for FH-based 
wireless networks was proposed in [25]. The proposed 
method combines time–frequency signal processing and 
deep learning to achieve accurate frequency-hopping 
sequence estimations. The combined model comprises a 
convolution CNN and a Gated Recurrent Unit (GRU). 
Results in [25] showed that the proposed method can 
flexibly estimate the frequency hopping sequence 
regardless of sequence length. Reference [26] also 
combined deep learning with time-frequency analysis to 
identify abnormal signals successfully. Finally, radio 
Frequency Jamming detection and classification using 
machine learning were introduced in [27] and [28]. 

This paper introduces an intelligent receiver designed 
for a frequency-hopping wireless communication setup, 
which operates within a multipath fading channel. The 
proposed receiver utilizes a deep learning algorithm to 
decode the received signal. Specifically, a Feedforward 
Neural Network (FFNN) consisting of input, hidden, and 
output layers is utilized for deep learning training purposes. 
The collected dataset underwent a prepossessing 
procedure to guarantee consistency and simplify model 
training.  

The rest of the paper is organized as follows: Section II 
outlines the problem formulation. Section III details the 
development of the proposed model. Section IV presents 
simulation results and discussions. Finally, Section V 
concludes the paper. 

II. PROBLEM FORMULATION 

In this paper, we consider the baseband model of 
multipath FH system as shown in Fig. 1, modeled as a 
time-varying linear filter [29–31]. The equivalent low-pass 
channel impulse response is given by: 

ℎ(𝜏, 𝑡) = ∑ 𝛽𝑖(𝑡)𝑒−𝑗∅𝑖(𝑡)𝑃(𝑡)
𝑖=1 𝛿(𝑡 − 𝜏𝑖(𝑡))        (1) 

where 𝛽𝑖(𝑡), ∅𝑖(𝑡) and 𝜏𝑖(𝑡) are respectively the channel 
magnitude, channel phase, and the associated time delay 
of the ith multipath, which are assumed to be independent. 
The received signal is the convolution of the input signal 
x(t) with the equivalent low-pass channel impulse response 

ℎ(𝜏, 𝑡) 

y(t)=x(t)* h(τ,t)                                 (2) 

where * is the convolution operator. The baseband model 
of the FH received signal in a multipath environment of the 
sample version form can be expressed as 
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1. Baseband model of multipath FH system.
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𝑦(𝑛)(𝑘𝑇) = ∑ 𝛽𝑖(𝑡)𝑒−𝑗∅𝑖(𝑡)𝑒−𝑗2𝜋𝑓𝑛𝜏𝑖𝑠(𝑘𝑇 − 𝜏𝑖; 𝑏𝑛) +
𝑃(𝑡)
𝑖=1

𝑤(𝑛)(𝑘𝑇)                                    (3)

where 𝑦(𝑛)(𝑘𝑇) is the received signal in the nth hop, T is 

the sampling period, 𝑓𝑛 is the frequency in the nth hop, 𝑏𝑛

is the sequence of the transmitted bits. 𝑠(𝑘𝑇; 𝑏𝑛) is the 

transmitted baseband signal and 𝑤(𝑛)(𝑘𝑇) is the white 

Gaussian noise parameter. Parameter P denotes the total 

number of multi paths considered in the model. Channel 

parameters (channel magnitude, channel phase, and time 

delay), and the transmitted bit the sequence are unknown. 

The hop frequency is known for both transmitter and 

receiver [30]. The discrete time version of Eq. (3) is given 

by:

𝑦(𝑛)(𝑡) = ∑ 𝛽𝑖𝑒−𝑗2𝜋𝑓𝑛𝜏𝑖𝑠𝑖(𝑡) + 𝑤(𝑛)(𝑡), 𝑡 = 1,2, … , 𝑀𝑃
𝑖=1

(4)

where 𝑠𝑖(𝑡) is the delayed version of the transmitted signal 

though the ith multipath, 𝛽𝑖 is considered complex 

standard Gaussian random, 𝜏𝑖 is considered uniform 

random distribution and the AWGN is considered complex 

standard Gaussian random.

The FH communication system depicted in Fig. 1, the 

parameters listed in Table I and the full details were 

previously discussed in [30]. In the transmitter, the data 

information is modulated by the modulator. The study 

involved a progressive exploration of modulation schemes, 

commencing with the baseline Binary Phase Shift Keying 

(BPSK) and subsequently extending to more complex 

schemes, including Quadrature Phase Shift Keying 

(QPSK), 8-PSK, and 16-PSK. 

TABLE I: PARAMETERS OF BASEBAND MODEL OF MULTIPATH FH
SYSTEM

Parameters Description

P Random Number of Multipath  P=1,2,3,4,…

i Multipath index i=1:1:P

n Frequency Hop index

t Time index  𝑡 = 1,2, … 𝑀

𝛽𝑖
The ith path channel gain, Complex Gaussian random 

distribution

𝜏𝑖 The ith path time delay, uniform random distribution

fn

The frequency in the nth hop Known for both Tx and 

Rx., Randomly selected from 75 frequencies 1899 to 

1929 MHz.

𝑠𝑘 The kth symbol taken from QAM

𝑠𝑘(𝑡)
The kth continuous time signal representing the kth 

Symbol 

𝑠𝑘,𝑖(𝑡)
The delayed version of the the kth transmitted signal 

though the ith multipath.

ℎ(𝜏, 𝑡) The Impulse response of NBFH multipath model

𝑦(𝑛)(𝑘)
The kth received signal in the n-th consists of M

samples

𝑤(𝑛)(𝑘) AWGN to the k-th received signal in the nth

y
The received M samples of the the kth signal in the 

nth hop

yy NN input

As an example, let’s take quadrature phase shift keying 

(QPSK), where the binary signal yields four unique input 

combinations: 00, 01, 10, and 11, corresponding to four 

symbols: s0, s1, s2, and s3. Consequently, in QPSK, the 

binary input data are grouped into pairs of two bits to 

create a symbol. Within the modulator, each symbol 

produces one of the four potential output phases: +45°, 

+135°, 45°, and 135°.

The problem addressed in this article is the estimation 

of the transmitted bits/symbols, in other words, referring 

to Eq. (4), estimating the transmitted baseband signal 𝑠𝑖(𝑡)

based on the received signal 𝑦(𝑛)(𝑡) under additive white 

Gaussian noise and multi path scenario via machine 

learning. The received M samples of the nth hop is 

collected in vector y given by:

𝑦 = [𝑦0    𝑦1   𝑦2  … … 𝑦𝑀−1]               (5)

The real part of 𝑦 is concatenated with the imaginary 

part to form a vector of length 2M which will be the input 

to ML-based receiver.

yy = [Real (𝑦), Imaginary (𝑦)]                   (6)

III. DEVELOPMENT OF ML METHOD

In recent years, there has been increasing interest in 

using machine learning models to replace the conventional 

channel estimator. Machine learning models can be trained 

on a large dataset of channel measurements, and they can 

learn to estimate the channel response more accurately 

than traditional statistical models.



There are several potential advantages to using a 

machine learning model to replace the conventional 

channel estimator. First, machine learning models can be 

more accurate than traditional statistical models, 

especially in complex or rapidly changing channels. 

Second, machine learning models can be more adaptive 

than traditional statistical models, and they can learn to 

adapt to changes in the channel over time. Third, machine 

learning models can estimate a broader range of channel 

characteristics than traditional statistical models, such as 

the channel's directionality or polarization. However, there 

are also some challenges associated with using machine 

learning models for channel estimation. First, machine 

learning models can be computationally expensive to train 

and run. Second, machine learning models can be sensitive 

to the quality of the training data, and they may only 

perform well if the training data is representative of the 

actual channel conditions. Third, machine learning models 

can be challenging to interpret, and it can be difficult to 

understand how they are making their predictions. The 

most straightforward deep architecture is the Multi-Layer 

Perceptron (MLP), which consists of a succession of fully 

connected layers separated by activation functions. 

Despite their simplicity, MLPs remain an essential tool 

when the dimension of the signal to be processed is 

manageable. 

A. Datasets Generation 

The first step of the research is to create a synthetic 

dataset that mimics the complexity of actual signal delays. 

A random number of multipath models with a wide range 

of SNR (SNR=0, 5, 10, … dB) is considered. The 

transmission was confined to the range 1899 MHz to 1929 

MHz, the uplink frequency range for the PCS system. A 

total of 75 frequencies were considered, with a 400 kHz 

frequency separation between carriers. The symbol period 

was set to 4µs. Twenty thousand signals were generated, 

with each signal/symbol having a length of 40 complex 

samples; real and imaginary parts are concatenated on 80-

length input feature vectors. The time delay is taken 

randomly from a uniform distribution between zero and 

one, and the channel gain is taken as a random complex 

normal distribution.  

B. Dataset Preprocessing 

The dataset went through preprocessing procedures to 

guarantee consistency and make model training easier. 

Categorical labels are used for training. After that, the 

dataset was split into training (80%) and testing (20%) 

groups [32]. To accommodate this variability, the output 

layer utilizes a linear activation function, allowing for the 

flexibility required to capture such experiment-specific 

nuances. 

C. Neural Network Architecture 

A feedforward neural network is an artificial neural 

network where the information moves in only one 

direction forward from the input layer, through the hidden 

layers, and finally to the output layer. Each layer consists 

of nodes (neurons), and connections between nodes have 

associated weights. During training, the weights are 

adjusted to minimize the difference between predicted and 

actual output. The architecture of the FFNN employed in 

this study shown in Fig. 2, comprises three hidden layers, 

each playing a pivotal role in capturing the intricate 

relationships within the synthesized signals. 

 

 

Fig. 2. Feedforward Neural Network (FNN) architecture, the diagram 

automatically generated by ChatUML. 

1) Input layer 

The input layer is designed to handle 80 features, 

representing the real and imaginary parts of the 40 

complex samples. The values associated with these 

neurons would be the actual values of the features in your 

input data. The primary role of the input layer is to pass 

this information forward to the subsequent layers in the 

neural network. The subsequent layers, often hidden and 

an output layer, perform computations and learn patterns 

from the input data by adjusting weights associated with 

the connections between neurons. 

2) Hidden layers 

The hidden layers consist of three layers:  

A) Hidden layer1 

This is the first hidden Fully Connected Layer with 128 

neurons. Each of the 128 neurons in this layer is connected 

to all 80 neurons in the input layer. So, the fully connected 

layer serves as the first hidden layer, and it directly 

receives input from the features in the input data. The 

weights associated with these connections are learned 

during training to allow the network to capture complex 

patterns and relationships in the data. The rectified linear 

unit (ReLU) activation function is applied after the first 

hidden layer; the ReLU is a common activation function 

used in neural networks. It introduces non-linearity by 

outputting the input for positive values and zero for 

negative values. This non-linearity is important for the 

network to learn complex patterns. The ReLU activation 

function is defined as follows: 

f(x)=max(x,0)                         (7) 

B) Hidden layer 2 

This is the second hidden fully connected layer, with 64 

neurons directly connected to the first hidden layer. This 

implies that the 64 neurons in the second hidden layer 

receive input from the 128 neurons in the first hidden layer. 

Input layer: Full connected feature input 

layer number of neurons: 80 

Hidden layer 1: Full connected layer number of 

neurons: 128 activation function: ReLU 

Hidden layer 2: Full connected layer number of 

neurons: 64 activation function: ReLU 

Hidden layer 3: Full connected layer number of 

neurons: 32 activation function: ReLU 

Hidden layer 4: Full connected layer number of 

neurons: 4 activation function: Softmax 
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The weights associated with these connections are learned 

during training, allowing the neural network to capture and 

model complex patterns in the data. The ReLU activation 

is applied after this layer. 

C) Hidden layer 3 

This is the third fully connected layer with 32 neurons: 
The values from the ReLU activation function in the 
second layer are connected to each of the 32 neurons in 
this third hidden layer. During training, the network learns 
the weights associated with these connections to capture 
patterns and relationships in the data. The additional non-
linear transformations to the input data aid the network's 
ability to learn complex representations. The ReLU 
activation function is used after this layer.  

3) Output layer 
This is a fully connected output layer with a number of 

neurons equal to the number of classes. In the QPSK case, 
the number of classes is set to 4, representing the possible 
transmitted symbols. Softmax activation is applied to the 
output of the fully connected layer. To convert the raw 
scores into class probabilities. For deep learning 
classification purposes, the Softmax of the output of the 
classifier network is the probability distribution, which is 
then converted to the binary matrix in which each class is 
represented by a unique binary number for classification 
purposes. The SoftMax activation function is commonly 
employed in the output layer for multi-class classification 
problems. It converts the raw output scores of the network 
into probabilities, ensuring that the sum of the probabilities 
for each class is 1. This makes it suitable for classification 
tasks. It specifies the loss function and performance 
metrics for multi-class classification tasks. The SoftMax 
activation function can be described mathematically as: 

𝜎𝑖 =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝐶

𝑗−1

                                   (8) 

where the vector 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝐶]  represents the raw 

scores for every single class, 𝜎 = [𝜎1, 𝜎2, … , 𝜎𝐶]  is the 

Softmax function output vector with 𝑥𝑖  being the raw 
score for the class i, and C is the number of classes. The 

Softmax activation function normalizes the raw scores 𝑥𝑖 
so that the output values lie between 0 and 1 such that the 
sum of the probabilities of the raw scores is one, i.e. 

∑ 𝜎𝑖
𝐶
𝑖 = 1. 

The categorical cross-entropy loss is a popular and 
effective performance metric. It is a widely utilized metric 
for addressing multi-class classification challenges. It 
quantifies the disparity between the predicted probability 
distribution, determined through the SoftMax activation 
function, and the actual probability distribution 
represented by one-hot encoded labels. The objective 
function is often categorical cross-entropy for a multi-class 
classification task such as modulation recognition. 
Categorical cross-loss is a measure of the difference 
between two probability distributions. The SoftMax 
activation function and Categorical cross-entropy work 
together in multi-class classification tasks. The 
Categorical Cross-Entropy Loss can be represented in 
mathematical form as [32]: 

𝐿 = −
1

𝑁
∑ ∑ 𝑦𝑖𝑗log (𝑝𝑖𝑗)𝐶

𝑗=1
𝑁
𝑖=1                             (9) 

where N is the total number of samples in the validation 

set, C is the number of classes, 𝑦𝑖𝑗 is the indicator function 

that is 1 if the true label for sample 𝑖  is class 𝑗  and 0 

otherwise, and 𝑝𝑖𝑗 is the predicted probability assigned by 

the model to sample 𝑖 being of class 𝑗. 

D. Neural Network Training Process 

The adaptive moment estimation (Adam) optimization 

algorithm is a popular and effective optimization algorithm 

used to minimize the loss of function during the training of 

neural networks. Adam combines ideas from root mean 

square propagation (RMSprop) and momentum. Adam 

maintains two moving averages for each parameter: the 

first moment (mean) and the second moment (uncentered 

variance). These moving averages are computed using 

exponential decay and are used to adjust the learning rates 

for each parameter during training adaptively. The 

algorithm helps overcome some limitations of other 

optimization techniques, such as being sensitive to the 

choice of learning rates. The key features of Adam 

optimizer include adaptive learning rates, which can be 

beneficial when dealing with sparse data and noisy 

gradients. It also incorporates momentum-like behaviours 

to help accelerate the optimization process. Initial learning 

rate is set to 3e-4. Maximum number of epochs is set to 15. 

Mini-batch size is set to 64. Validation is performed every 

5 epochs. The train Network function in MATLAB is used 

to train the neural network using the specified architecture, 

training data, and options. By plotting various metrics 

during training, we can learn how the training is 

progressing. For example, we can determine if and how 

quickly the network accuracy is improving, and whether 

the network is starting to overfit the training data. 

IV. SIMULATION RESULTS 

We launch an extensive computer simulation to assess 

the performance of the proposed estimator. Both training 

and validation loss metrics are crucial for evaluating the 

model's effectiveness. The training loss guides parameter 

updates, while validation loss provides an independent 

assessment of the model's generalization to unseen data. 

Monitoring both ensures the model is well-performing and 

generalizable. Fig. 3 illustrates the training loss and 

validation loss for various modulation schemes and dataset 

sizes specified in Table II.  

TABLE II: THE TRAINING PROGRESS TABLE  

Results 2-PSK 4-PSK 8-PSK 16-PSK 

Number of train signals 500 1000 10000 20000 

Validation accuracy 100% 99.29 96.8% 94.6% 

Elapsed time 2.0 s 4.0 s 11.0 s 34.0 s 

Epoch 15 15 15 15 

Iterations 30/30 15/15 540 1220 

Iteration per epoch 2 17 125 250 

Maximum iterations 30 569 1875 3750 

Validation frequency 5 5 5 5 

Constant learning rate =0.0003 

A decreasing training loss indicates effective learning 

from the provided data. The stability or reduction of the 

validation loss indicates the model's expected performance 
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on real-world scenarios beyond the training set. The 

experimentation involved assessing the performance of 

various Phase Shift Keying (PSK) modulation schemes, 

namely 2-PSK, 4-PSK, 8-PSK, and 16-PSK, using a 

machine learning model. Each modulation scheme was 

trained with a different number of signals, ranging from 

500 for 2-PSK to 20,000 for 16-PSK. The elapsed time for 

training increased as the complexity of the modulation 

scheme grew, with 2-PSK completing in 2.0 s and 16-PSK 

taking 34.0 s. The training process was conducted over 15 

epochs for all schemes, with validation occurring every 5 

epochs. However, the number of iterations varied 

significantly between the schemes, with 2-PSK and 4-PSK 

completing 30 iterations each, while 8-PSK required 540 

iterations and 16-PSK necessitated 1220 iterations to reach 

convergence. This discrepancy in iteration counts 

translated to varying iteration per epoch values, with 2-

PSK requiring two iterations per epoch, 4-PSK 17 

iterations per epoch, 8-PSK125 iterations per epoch, and 

16-PSK 250 iterations per epoch. Additionally, a constant 

learning rate of 0.0003 was maintained throughout the 

training process for all modulation schemes. These results 

offer insights into the performance and computational 

requirements of different PSK modulation schemes, 

crucial for optimizing communication system designs and 

machine learning model training strategies. The accuracy 

of a neural network shown in Fig. 4 is commonly 

computed as the ratio between the number of correct 

predictions and the total number of predictions. The 

validation accuracy varied across the schemes, with 2-PSK 

achieving a perfect accuracy of 100%, followed by 99.29% 

for 4-PSK, 96.8% for 8-PSK, and 94.6% for 16-PSK. The 

experiment may be repeated considering FSK, DPSK, 

QAM and a new set of figures will be generated. The trend 

is the same with some minor findings that we may show 

later.  

  
(a)                                                                                  (b) 

  
(c)                                                                                  (d) 

Fig. 3. Validation and training loss for (a) 2-PSK, (b) 4-PSK, (c) 8-PSK, and (d) 16-PSK. 

  
(a)                                                                                  (b) 

  
(c)                                                                                  (d) 

Fig. 4. Validation and training accuracy for (a) 2-PSK, (b) 4 PSK, (c) 8-PSK, and (d) 16-PSK. 
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Fig. 5 is a confusion matrix that is often used to evaluate 

the performance of a classification algorithm on a set of 

data for which the true values are known. The probability 

matrix is closely related to the confusion matrix, typically 

refers to the matrix of predicted probabilities for each class 

given by a classification model. Each row in the 

probability matrix corresponds to an actual class, and each 

column corresponds to the predicted probability for a 

specific class. This confusion matrix helps evaluate the 

performance of a classification model across four different 

classes, providing insights into the model's strengths and 

weaknesses in predicting each class. Accuracy is inversely 

related to the Symbol Error Rate (SER), as higher accuracy 

implies a lower likelihood of incorrectly detected symbols. 

The model will be revisited, as the primary goal of this 

article was to evaluate the potential of using machine 

learning algorithms. A new DNN will be built to recognize 

the hop frequency. Security threats and anti-Jamming 

techniques will be investigated. Also, a detailed 

comparative study to investigate the performance and the 

complexity of the traditional methods and the DNN/ ML 

methods will be introduced soon.  

 
Fig. 5. Confusion matrix for a three multi path and zero dB SNR. 

V. CONCLUSION 

This work develops an intelligent receiver for SFH 

system using deep learning, The neural network will 

replace the conventional receiver, it is designed to take 80 

features (received signal samples) as input and predict one 

of 2, 4, 8, or 16 classes, representing the transmitted 

symbol depending on the modulation technique. The 

training process of the feedforward neural network aims to 

optimize the network's weights to minimize the 

classification error on the provided training and validation 

datasets. The generated training loss and validation loss 

curves confirmed the ability of the receiver to learn. In our 

next research article, the performance, and the complexity 

of the DNN estimator will be compared with the 

conventional ones.  
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