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Abstract—Reliable data-driven methods, utilizing validated 
predictive models of electricity consumption, offer 
substantial promise to effectively manage energy in densely 
populated electrical grids, especially in urban areas like 
Mosul City. This research presents a model for forecasting 
the hourly electrical load for Mosul City, taking into account 
meteorological variables such as temperature, humidity, 
wind speed, cloud cover, and the type of day (holiday or 
working day). It explores two distinct scenarios: the first one 
examines the influence of weather elements on predictions of 
electrical load, and the second one employs the Least Squares 
Support Machine (LSSVM) model to forecast electricity 
consumption in Mosul City using historical load data and 
meteorological information. Two optimization algorithms, 
the Particle Swarm Optimization algorithm (PSO) and the 
Whale Optimization Algorithm (WOA), are employed to 
improve model accuracy and adjust the parameters of the 
LSSVM. In addition, the performance of the models in this 
research is evaluated using the Mean Absolute Percentage 
Error (MAPE). The results demonstrate the superiority of 
the LSSVM+PSO model over the LSSVM+WOA model and 
the basic LSSVM model in terms of accuracy and error 
reduction, while according to execution time, the 
LSSVM+PSO model takes a little longer than the 
LSSVM+WOA model. Consequently, the LSSVM+PSO 
model is deemed suitable for forecasting hourly electricity 
consumption in the city of Mosul. 

Index Terms—Least Squares Support Machine (LSSVM), 
mosul, particle swarm, short-term forecasting, whale 

I. INTRODUCTION

Load forecasting is crucial for efficient power system 
planning, scheduling, and operation. It plays a critical role 
in cost reduction and the optimization of electric power 
production dispatching, while also guaranteeing consistent, 
dependable, and safe access to electricity [1].  

Electric load prediction can be categorized into three 
types based on the time horizon. More specifically, long-
term electric load predictions span from one year to ten 
years, medium-term electric load predictions cover a range 
of one week to one year, and short-term electric load 

predictions encompass a period of one hour to one week 
[2]. 

Each framework in question is focused on specific tasks. 
For instance, long-term load predictions are utilized for 
planning purposes, such as capacity expansion and station 
infrastructure development. These predictions take into 
account factors such as population growth, economic 
trends, and technological advancements. On the other hand, 
medium-term load predictions are commonly employed 
for operational planning and resource allocation. These 
forecasts are based on seasonal changes, economic 
conditions, and historical load data. Lastly, short-term load 
forecasting plays a crucial role in real-time operations, 
power system planning, and grid management. This 
particular type of forecast heavily relies on various short-
term factors, including weather conditions, time of day, 
day of the week, holidays, and other aspects that impact 
energy consumption in the short run [3]. 

Short-term load prediction plays a crucial role in power 
planning models, offering benefits such as optimizing 
power plant operations, enhancing system stability, cutting 
costs, and boosting financial returns for utilities and energy 
providers. However, inaccurate forecasts can result in 
substantial power losses. Therefore, there is a pressing 
need for the development of a precise and efficient short-
term electrical load prediction system to satisfy load 
forecasting criteria [4].  

There are three categories of techniques for electric load 
forecasting: conventional, unconventional, and hybrid 
optimization techniques. These techniques are classified 
based on their complexity. Conventional techniques refer 
to simple methods that rely on fundamental equations and 
technologies to forecast the load. These techniques, such 
as the Kalman Filter (KF), Multiple Linear Regression 
(MLR), exponential smoothing, regression, and time 
series methods, can easily identify a single optimal 
solution and are straightforward to implement [5].  

Unconventional techniques include artificial 
intelligence-based methods and modern computing, such 
as Artificial Neural Networks (ANNs), Support Vector 
Machines (SVM), and fuzzy models. Hybrid technologies 
integrate optimal AI technologies in a coordinated manner Manuscript received February 4, 2024; revised April 15, 2024; 
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to achieve the best results in short-term load forecasting 
[6]. 

To construct prediction models, it is necessary to 
establish the definition of inputs and outputs. The accuracy 
of the prediction relies on the precision of the input factors, 
which are influenced by the characteristics of the load. The 
resulting output is a daily load forecast for the upcoming 
24 hours. Many factors can affect electric load prediction, 
including meteorological factors (temperature, humidity, 
wind speed, and cloud cover.), and the type of day 
(working or holidays) [7]. 

The primary aim of the research is to develop a 
proficient predictive model for hourly electricity load 
forecasting in Mosul City, integrating historical load data, 
meteorological factors, and factors like the type of day 
(holiday or working day). The research seeks to explore 
the impact of weather elements on electricity consumption 
and evaluate the effectiveness of the Least Square Support 
Vector Machine (LSSVM) model combined with 
optimization algorithms Particle Swarm Optimization 
(PSO) and Whale Optimization Algorithm (WOA) in 
enhancing forecast accuracy.  

An overview of important studies conducted in the field 
of electrical load forecasting showed the importance of 
continuous research and development in this field to 
improve forecast accuracy and improve power system 
operations. Several research have been done to solve the 
power system forecasting. 

Ziel [8] introduced the “Post-COVID Paradigm”, which 
is an inventive concept involving the combination of 
multiple point prediction models to create an online 
forecast where this model on Day-Ahead electricity 
demand forecasting. Chen et al. [9] developed an 
evolutionary load prediction technique in response to the 
global COVID-19 pandemic. This model was designed to 
provide timely solutions to the challenges posed by load 
forecasting during this crisis, significantly reducing the 
disparity between predicted and actual load values. 

While, the revolution in the world of smart algorithms 
and their applications is one of the most applied and 
promising topics in power engineering, such as PSO) 
Genetic Algorithm (GA), Grey Wolves Optimization 
(GWO), Garra Rufa Optimization (GRO), and Ant Colony 
Optimization Algorithm (ACO) [10–14]. Reddy [15] 
introduced an innovative method for predicting short-term 
load. His proposal involved incorporating back 
propagation and the Bat algorithm, while also considering 
environmental factors like temperature and humidity. 
Salkuti [16] proposed an innovative method that utilizes 
Radial Basis Function Neural Networks (RBFNNs) to 
address short-term load forecasting and takes into account 
external variables like temperature and humidity into the 
forecasting process. Tudosev et al. [17] proposed a 
convolutional neural network (CNN) model that integrates 
traditional external factors and incorporates data related to 
the COVID-19 pandemic. This model was used to address 
short-term load forecasting for the total electricity load in 
the Romanian power system. To innovation of several 
hybrid models for short-term load forecasting, Yadav et al. 
[18] combined various techniques, including wavelet 

decomposition, fuzzy clustering, Support Vector 
Regression (SVR), and Deep Learning Networks (DLN). 
Through case studies, these hybrid models were evaluated 
for accuracy and compared with traditional methods and 
deep learning techniques. The findings demonstrated that 
hybrid models outperformed conventional approaches and 
deep learning methods, show casing their effectiveness in 
load forecasting. Jaber et al. [19, 20] employed a hybrid 
model that combined the SVM model with the PSO 
algorithm and the Firefly Algorithm (FA) in two separated 
papers to optimize the SVM parameters, thereby 
enhancing the accuracy of short-term load predictions. 
Barman et al. [21] proposed a novel hybrid season-specific 
model for short-term load forecasting that incorporates 
seasonality effects, they used a Season Specific Similarity 
Concept (SSSC) to identify season-specific effective 
meteorological variables and used them into the 
forecasting process. By combining FA, SVM, and SSSC, 
the model integrated traditional methods by integrating 
season-specific effective meteorological variables and 
considering cloud cover and wind speed in addition to 
temperature, leading to improved forecasting accuracy for 
different seasons. Qiang et al. [22] recommended the use 
of the LSSVM model to analyze the factors influencing 
load forecasting. Their approach relied on historical load 
data and meteorological information specific to particular 
locations. Mustaffa et al. [23] introduced a novel hybrid 
method, which combines the marriage in Moth-Flame 
Optimization (MFO) algorithm with the LSSVM model 
termed MFO-LSSVM and proved its effectiveness in 
addressing a wide range of optimization challenges. 
Khwaja et al. [24] introduced a model to improve short-
term electrical load forecasting through an ensemble 
machine learning method based on the ANNs model, 
showing a reduction in bias and variation in comparison to 
current load prediction methods. Liu et al. [25] put forth a 
short-term hybrid prediction model comprising three key 
modules: parameter optimization, data preprocessing, and 
forecasting. By mitigating the limitations of traditional 
models, the hybrid model achieved commendable 
predictive performance. A unique hybrid method, 
developed by Yang et al. [26] hinged on the LSSVM 
model and leveraged the GWO and Cross-Validation (CV) 
algorithms to optimize Auto Correlation Function (ACF) 
and LSSVM regression. To address the issue of 
inefficiency, Ma et al. [27] offered a short-term load 
prediction model based on the PSO algorithm which is 
used to optimize the LSSVM model. Liu [28] introduced a 
short-term power load forecasting method that integrates 
the SVM model, CNN, and Random Forest (RF). This 
model leverages RF for input variable optimization, CNN 
for feature extraction, and an SVM model for prediction. 
The evaluation of this method on Singaporean power load 
data used an improved forecast accuracy compared to 
alternative models. Since several electric load models were 
applied effectively under particular circumstances, Duan 
et al. [29] suggested a library to keep a collection of 
electric load models on hand and to select the top model 
each day to address the electrical load forecasting issues. 

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 13, No. 5, 2024

332



Despite their potential benefits, all of the 
aforementioned methods possess a number of significant 
drawbacks that need to be taken into consideration. For 
example, the RBF model suffers from over fitting and a 
low convergence rate and requires a large amount of 
historical data for prediction [19]. The RF model 
encounters challenges when faced with highly variable 
data, exhibits sensitivity in the selection of input features, 
and may involve high computational costs [30]. The 
ANNs are vulnerable to adversary attacks, and the ANNs 
typically need many labeled training data to learn 
effectively [31]. SVM suffers from sensitive to outliers and 
lacks flexibility in handling large feature spaces [32]. 
Addressing these drawbacks often involves careful model 
selection, preprocessing of data, and optimization of hyper 
parameters. 

This study explores two distinct scenarios aimed at 
enhancing the accuracy of electrical load forecasting. In 
the first scenario, the study investigates the influence of 
meteorological factors on electricity usage. Utilizing the 
correlation coefficient, the connection between weather 
elements and electrical loads is analyzed. Results indicate 
that temperature and humidity exhibit a stronger impact on 
electrical load compared to wind speed and cloud cover. In 
the second scenario, the LSSVM model is employed to 
predict electricity consumption in Mosul, Iraq, based on 
historical load data and meteorological information. The 
LSSVM model is trained using this data set, enabling 
future electrical load predictions. To further improve 
forecast accuracy, the WOA and the PSO algorithms are 
applied. These algorithms optimize the kernel function and 
regularization parameters of the LSSVM model. The 
findings demonstrate that the LSSVM model combined 
with PSO achieves superior performance compared to 
other scenarios, including LSSVM combined with WOA 
or LSSVM alone. This model yields the lowest error rate 
and accurately predicts the electrical load for Mosul city. 

This research is distinguished by its meticulous analysis 
of meteorological factors and the application of 
mathematical methods to understand their interaction with 
electrical loads. The utilization of the WOA algorithm for 
short-term load forecasting in Iraqi electrical power system 
data analysis represents a novel contribution to the field. 
Overall, this study offers precise results with minimal 
effort, contributing significantly to the improvement of 
short-term load forecasting accuracy. 

II. METHODOLOGY 

A. Least Squares Support Vector Machine 
LSSVM is a supervised machine learning method, 

serving as an extension of the SVM technique. It 
significantly expedites solution times by transforming the 
quadratic programming (QP) problem arising from the 
classic SVM’s constraint conditions into a linear equation 
problem. This reformulation simplifies computation, 
thereby facilitating and accelerating the training process 
[23]. {(xk, yk), 𝑘 = 1, 2,… , 𝑛} is the training set, with 𝑥𝑘∈𝑅𝑛 being the input data and yk∈R𝑛 being the output data. 
The samples are transferred into a significantly higher 

dimensional feature space (xk) using a nonlinear mapping 
function called (⋅). The best decision function should be 
established in the high-dimensional feature space: 𝑦(𝑥) = 𝛚்𝛟(𝑥) + 𝑏                        (1) 

where  𝛚𝑻  is an m-dimensional vector, 𝑏  is a bias, and 𝛟(𝑥) is a nonlinear function that converts the input space 
into the feature space. In LSSVM, the optimization 
problem is defined in order to solve the objective function 
thus:    ൝minఠ,௕,௘ 𝐽ଶ(𝛚, 𝑏, 𝜉) = ଵଶ (𝛚்𝛚) + 𝛾 ଵଶ ∑  ௡௜ୀଵ  𝜉௞ଶ  𝑦௞[𝛚்𝛟(𝑥௞) + 𝑏] = 1 − 𝜉௞, 𝑘 = 1, ⋯ , 𝑛          (2) 

where the regularization factor   𝛾 , also known as the 
penalty factor, reduces the impact of the maximum margin 
and the minimum regression error, and where 𝜉 is the slack 
variable required to accommodate regression error. The 

𝐿(𝛚, 𝑏, 𝜉; 𝛼) = 𝐽ଶ(𝛚, 𝑏, 𝜉) − ∑  ௡௞ୀଵ 𝛼௞ሼ𝑦௞(𝛚ୃ𝛟(𝑥) + 𝑏) − 1 + 𝜉௞ሽ    (3) 

where 𝛼௜(𝑖 = 1,2, ⋯ , 𝑛)  is the Lagrange multiplier. 
According to Karush-Kuhn-Tucker (KKT) conditions: 

⎩⎪⎪⎨
⎪⎪⎧డ௅డఠ = 0 → 𝛚 = ∑  ௡௞ୀଵ  𝛼௞𝑦௞𝛟(𝑥௞)డ௅డ௕ = 0 → ∑  ௡௞ୀଵ  𝛼௞𝑦௞ = 0డ௅డకೖ = 0 → 𝛼௞ = 𝛾௞డ௅డఈೖ = 0 → 𝑦௞[𝛚்𝛟(𝑥௞) + 𝑏] − 1 + 𝜉௞ = 0

       (4) 

The above equations can be written as the solution to the 
following set linear equations ൤0 −𝑦୘𝑦 Ω + 𝛾ିଵ𝐼൨ ቂ𝑏𝛼ቃ = ቂ01തቃ                       (5) 

where  𝐲 = [𝑦ଵ, ⋯ 𝑦௡]்,  𝟏ഥ = [1, ⋯ 1]் , 𝛂 =[𝛼ଵ, ⋯ 𝛼௡]் ,𝛀 = 𝐙𝐙் ,𝐙[𝛟(𝑥ଵ)்𝑦ଵ, ⋯ , 𝛟(𝑥௡)்𝑦௡] . Each 
matrix element in the matrix has the following form: Ω௜,௝ = 𝑦௜𝑦௝𝛟(𝑥௜)୘𝛟൫𝑥௝൯ = 𝑦௜𝑦௝𝐾൫𝐱௜, 𝐱௝൯          (6) 

The kernel function is defined as 𝐾൫𝑥௜, 𝑥௝൯. The kernel 
function 𝐾൫𝑥௜, 𝑥௝൯ = 𝛟(𝑥௜)்𝛟൫𝑥௝൯. As a value equal to the 
inner product of two vectors 𝐱௜ and 𝐱௝ in the feature space 𝛟(𝑥௜)  and 𝛟.  Radius basis function (RBF) kernels and 
polynomial kernels are examples of kernel functions: 

Polynomial: 𝐾(𝑥, 𝑥௞) = (𝑥௞் 𝑥 + 1)ௗ, 𝑑 = 1, ⋯ , 𝑛      (7) 

RBF: 𝐾(𝑥, 𝑥௞) = exp ൬− ∥∥௫ି௫ೖ∥∥మଶఙమ ൰               (8) 

where (𝜎ଶ) is a tuning parameter that is related to the radial 
basis function.  

The LSSVM model for regression is as follows: 𝑦(𝑥) = ∑  ௡௞ୀଵ 𝛼௞𝐾(𝑥, 𝑥௞) + 𝑏               (9) 

The basic outline of the the LSVM model can be 
summarized in the following steps: as shown in Fig. 1.  
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related Lagrange dual issue is:



 
Fig. 1. Flowchart of least squares support vector machine. 

Step 1: Prepare and preprocess the required data. In this 
step, the data is processed, missing values are handled, and 
outliers are processed to ensure data quality and reliability.  

Step 2: Separate the data into test and training sets. This 
step is crucial for evaluating the model’s performance and 
generalizing it to unseen data. 

Step 3: Construct an objective function that aims to find 
the hyperplane that maximally separates the data while 
minimizing the errors between the expected and actual 
values. The excellent objective function of LSSVM 
ensures that the model is globally optimal, meaning that it 
finds the best possible solution given the training data. 

Step 4: Define the Lagrangian function, a critical 
component of LSSVM. It provides a way to formulate an 
optimization problem and transform it into a more efficient 
dual problem. This transformation allows kernel functions 
to handle nonlinear relationships between input features 
and the target variable. 

Step 5: Specify the LSSVM model parameters, such as 
kernel parameters and regularization parameters. These 
parameters play a significant role in model performance 
and need to be carefully selected. 

Step 6: Train the LSSVM model using the training data 
after choosing appropriate hyper-parameters. LSSVM 
defines model parameters through an optimization 
problem that seeks to minimize the objective function. 

Step 7: Utilize validation data to evaluate the trained 
model’s performance. Depending on the specific task, 
select an appropriate evaluation measure, such as mean 
absolute percentage error for regression tasks or 
classification accuracy for classification tasks. 

Step 8: Improve the model’s performance by adjusting 
its parameters based on the evaluation results. This 

iterative process continues until the desired level of 
performance is achieved, ensuring the model’s 
effectiveness in making predictions or classifications. 

Step 9: Iterative optimization: Iterate through training 
and validation steps and adjust model parameters to 
improve model predictions. Continuously evaluate 
whether the required model performance has been 
achieved. 

B. Particle Swarm Algorithm  
In 1995, Kennedy and Eberhart introduced the PSO as a 

global search technique inspired by the foraging behavior 
of birds. This algorithm has gained popularity as an 
optimization method [33]. The fundamental benefit of 
PSO is its capacity to quickly reach convergence in a 
variety of challenging optimization situations. PSO also 
provides several appealing benefits, such as simplicity by 
using fewer mathematical equations and having fewer 
implementation factors [34]. In a PSO algorithm, there are 
a swarm of particles, each representing a potential solution 
in an 𝑚-dimensional search space. Each particle is defined 
by its current position, denoted as  𝑥௜ = (𝑥௜ଵ, 𝑥௜ଶ, … , 𝑥௜௠), 
and its velocity, denoted as 𝑣ଵ = (𝑣௜ଵ, 𝑣௜ଶ, … , 𝑣୧୫). Each 
particle keeps track of its best-known position, referred to 
as pbest 𝑡௜ =(pbesti1, pbesti2, …, pbestim). This represents 
the best solution the particle the particle has currently 
discovered. The entire swarm keeps track of the global best 
position, referred to as gbest 𝑡௜= (gbesti1, gbesti2 …, gbestim, 
which represents the best solution found by any particle in 
the entire swarm. PSO uses an iterative process to update 
the velocity and position of each particle. The velocity 

𝑣௜௞ାଵ = 𝑤𝑣௜௞ + 𝑐ଵ𝑟ଵ(pbest 𝑡௜௞ − 𝑥௜௞) + 𝑐ଶ𝑟ଶ(gbest 𝑡௜௞ − 𝑥௜௞) 
(10) 

𝑥௜௞ାଵ = 𝑥௜௞ + 𝛼𝑣௜௞                          (11) 

The factor 𝑤 is known as the inertia weight. 𝑟ଵ and 𝑟ଶ 
are random variables sampled from the range [0, 1]. 𝑐ଵ and 𝑐ଶ  are acceleration coefficients: These coefficients 
determine the influence of the particle’s personal best 
(pbest ti) and the global best (gbest ti) on its velocity update. 𝑣୫ୟ୶ sets a limit on the maximum velocity, controlling the 
global exploration capability of the PSO algorithm. 

These steps describe the basic process of using the PSO 
algorithm to optimize the parameters of the LSSVM model 
for electricity demand forecasting, as shown in Fig. 2.  

Initially, the necessary data is input and prepared. This 
involves eliminating any missing values, dealing with 
outliers to maintain data accuracy, and dividing the data 
into a training set and a testing set. The training dataset is 
used to train the LSSVM+PSO model, while the testing 
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update Eq. (10) calculates the new velocity 𝑣𝑖
𝑘+1 for 

particle 𝑖 in the k+1 iteration. It depends on the previous 

velocity 𝑣𝑖
𝑘, the particle’s personal best pbest 𝑡𝑖, and the 

global best gbest 𝑡𝑖. It also includes random factors (𝑟1 and 

𝑟2) and acceleration coefficients (𝑐1 and 𝑐2).

The position update Eq. (11) calculates the new position 

𝑥𝑖
𝑘+1 for particle i based on its current position 𝑥𝑖

𝑘 and 

velocity 𝑣𝑖
𝑘.



dataset is reserved to evaluate its performance. The 
LSSVM parameters are then specified, and these 
parameters may include kernel parameters and 
regularization parameters. The PSO algorithm is used to 
optimize the LSSVM parameters. The PSO will iteratively 
search for the best set of parameters that minimizes the 
predefined objective function. Once the PSO algorithm 
optimizes the LSSVM parameters, use the resulting 
LSSVM+PSO model to forecast electricity demand. To 
evaluate the performance of the LSSVM+PSO model, use 
appropriate evaluation metrics. By adhering to these 
procedures, an effective and precise forecasting model can 
be developed for applications such as predicting electricity 
demand. This involves enhancing the LSSVM parameters 
through the utilization of the PSO algorithm to attain 
enhanced operational efficacy. 

 
Fig. 2. Flowchart of least squares support vector machine with particle 

swarm optimization. 

C. Whale Optimization Algorithm 
WOA is a nature-inspired optimization method 

proposed by Mirjalili and Lewis in 2016. It is widely used 
in engineering and optimization tasks due to its simplicity, 
effectiveness, and relatively few parameters [35]. The 
algorithm is inspired by the hunting behavior of humpback 
whales and is designed to strike a balance between global 
and local search capabilities [36]. WOA consists of three 
main steps: Surrounding Prey, Bubble-Net Technique, and 
Chasing the Prey [35]. 

Surrounding Prey: In this step, the algorithm simulates 
how humpback whales locate and encircle their prey. The 
ideal candidate solution is expected to be the target or very 
near it because the exact location of the optimal solution in 
the search space is initially uncertain. 𝑋(𝑡 + 1) = 𝑋∗(𝑡) − 𝐴𝐷,𝐷 = |𝐶𝑋∗(𝑡) − 𝑋(𝑡)|                   (12) 

Eq. (12) describes the behavior, where 𝑋(𝑡) represents 
the current location of the prey (candidate solution), 𝑋∗(𝑡) 
is the current optimal solution, 𝐷 is the distance between a 
whale’s location and the global optimal location, and 𝐴 
and 𝐶 are coefficient vectors. 𝐴 = 2𝑎r − 𝑎,   𝐶 = 2r                     (13) 𝑎 = 2 − ଶ௧்ౣ ౗౮                               (14) 

Eqs. (13) and (14) are used to calculate the values of 𝐴 
and 𝐶 , with 𝑎  decreasing linearly from 2 to 0 over the 
iterations, and r being a random scalar variable between [0, 
1]. Where 𝑇୫ୟ୶ is the maximum number of iterations. 

Bubble-Net Technique: This step describes how 
humpback whales use a bubble-net method to capture prey. 
Two methods are introduced: 

Shrinking Encircle Mechanism: Here, the value of 𝑎 is 
decreased, and a random 𝐴 between −1 and 1 is inserted to 
find the new position. 

𝑋(𝑡 + 1) = 𝐷𝑒ୠ୲ cos(2𝜋𝑙) + 𝑋∗(𝑡)                (15) 

Eq. (16) determines the path that individuals take to 
progress toward the population’s overall ideal location, 
and each whale randomly chooses one of the two updating 
mechanisms based on a probability 𝑝. 𝑋(𝑡 + 1) = ൜𝑋∗(𝑡) − 𝐴𝐷 if 𝑝 ൏ 0.5𝐷𝑒ୠ୲ cos(2𝜋𝑙) + 𝑋∗(𝑡) if 𝑝 ൒ 0.5     (16) 

Chasing the Prey: In this step, the agent’s location is 
updated with a randomly chosen value to replace the best 
match. This random update improves the search ability of 
the algorithm, ultimately enhancing its performance. 

𝑋(𝑡 + 1) = 𝑋୰ୟ୬ୢ − 𝐴𝐷,𝐷 = |𝐶𝑋୰ୟ୬ୢ − 𝑋(𝑡)|                 (17) 

where 𝑋⃗raud is the randomly generated location of the in 
whale. The ideal solution is chosen when|𝐴| ൏ 1; an agent 
is picked at random if|𝐴| ൐ 1. When the WOA meets the 
termination criteria, it is terminated. 

The fundamental schema of LSSVM using WOA 
involves several stages, as shown in Fig. 3. Firstly, input 
and prepare the required data, followed by processing the 
data to address missing values and outliers to uphold data 
quality. Subsequently, split the data into two sets: the 
training data set and the test data set. After that, initialize 
the LSSVM model parameters, such as kernel parameters 
and regularization parameters, then utilize the WOA 
algorithm to optimize these LSSVM parameters. WOA 
iteratively searches for the optimal set of parameters by 
minimizing a predefined objective function. After the 
WOA algorithm optimizes the LSSVM parameters, an 
LSSVM+WOA model is generated. The LSSVM+WOA 
model is applied to perform forecasts or forecasting tasks, 
such as electricity demand forecasting. In order to evaluate 
the performance of the LSSVM+WOA model, appropriate 
evaluation metrics are used. Depending on the specific 
problem, select relevant metrics, such as Mean Absolute 
Percentage Error (MAPE). By adhering to these steps, one 
can create a proficient predictive model for various 
applications, such as electricity demand forecasting. The 
optimization of LSSVM parameters using the WOA 
algorithm can significantly improve the model’s predictive 
performance. 

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 13, No. 5, 2024

335

Spiral Position Updated: Eq. (15) is used to describe 

how whales move in a helix-shaped pattern, which helps 

them in their hunting.

Eq. (17) describes this process, 



 
Fig. 3. Flowchart of least squares support vector machine with whale 

optimization algorithm. 

III. MODEL PERFORMANCE EVALUATION 

Some pointers should be made to comprehensively 
understand the characteristics of the model and thus verify 
the effectiveness of the proposed model. The indicator 
MAPE is introduced as a widely used measure for 
evaluating the accuracy of predictions. It measures the 
average absolute percentage difference between expected 
and actual values. This indicator can reveal the 
performance of the model from different angles. MAPE 
provides a clear understanding of how well the predictive 
model is performing in terms of the magnitude and 
direction of errors. The formula to calculate MAPE is as 
follows: MAPE = ଵ௅ ∑  ௅௧ୀଵ ቚ௬೟ି௬̂೟௬೟ ቚ ൈ 100                (18) 

IV. RESULTS AND DISCUSSION 

This work comprises two distinct scenarios related to 
meteorological factor analysis and short-term electrical 
load prediction. In this first scenario, the primary objective 
is to analyze meteorological factors, which include 
(temperature, humidity, wind speed, and cloud cover). The 
goal is to assess the impact of these meteorological factors 
on short-term electrical load prediction. Correlation 
coefficients are employed to quantify the strength of the 
relationships between weather conditions and fluctuations 
in electrical demand. Data for this analysis is sourced from 
the Iraqi Meteorological Organization and Seismology. In 
the second scenario, the primary focus is on short-term 
electrical load prediction. The prediction model used is the 
LSSVM model. LSSVM utilizes historical electrical load 
data from previous years and relevant weather data 
(temperature, humidity, wind speed, cloud cover, and day 
type) as input features. The historical electrical load data 
serves as a training dataset for the LSSVM model. To 
enhance the model accuracy, optimization algorithms, 
namely the WOA and the PSO, with the LSSVM model, 
are integrated to fine-tune the LSSVM model’s kernel 

functions and regularization parameters. These 
optimization algorithms help the model capture underlying 
data patterns more effectively, leading to more accurate 
load predictions. 

A. Analysis of Influencing Factors 
In the first scenario, the work is devoted to analyzing 

the effect of weather factors on the electrical load by using 
correlation coefficients as indicators of the strength of their 
relationships. These coefficients, which lie within the 
range of −1 to +1, allow a quantitative assessment of the 
degree of correlation between electrical load patterns and 
the values of different meteorological variables. A 
coefficient of +1 indicates a strong positive correlation, 0 
indicates no correlation, and -1 indicates a strong negative 
correlation. To approximate these correlations, a fourth-
degree linear polynomial equation is used. To calculate 
correlation coefficients, meteorological data is collected 
from the Iraqi meteorological organization and seismology, 
while electrical load data are obtained from the Training 
and Development Center of the Iraqi Ministry of 
Electricity. This data collection process extends over the 
summer and winter seasons of the city of Mosul for 2022 
and 2023. It reveals the complex relationships that exist 
between meteorological conditions and fluctuations in 
electrical loads. This correlation coefficient allows 
measuring the extent to which meteorological factors 
influence electrical load, providing valuable insights into 
the relationship between weather conditions and electricity 
consumption. 

Table I shows the correlation coefficient values between 
electrical load variables and various weather factors for the 
2022 summer season in Mosul.  

TABLE I: CORRELATION FACTOR BETWEEN VARIABLES AND 
ELECTRICAL LOAD IN SUMMER 

Variable Correlation coefficient value between 
variables and electrical load in summer 

Temperature 0.7793 
Humidity 0.4695 

Wind Speed 0.05495 
Cloud Cover 0.05029 

 
A strong correlation coefficient of (0.7793) indicates a 

robust relationship between temperature and electrical 
load during the summer. As temperatures rise, the 
electrical load also rises significantly, indicating that rising 
temperatures lead to increased electricity consumption in 
the summer. With a correlation coefficient of (0.4695), 
there is a moderate relationship between humidity and 
electrical load during the summer. Although not as strong 
as the temperature relationship, this suggests that high 
humidity levels contribute to electrical overload, likely due 
to the relationship between humidity and temperature. The 
weak correlation coefficient of (0.05495) indicates that 
there is no relationship between wind speed and electrical 
load during the summer. Wind speed does not affect load 
consumption. The correlation coefficient of (0.05029) also 
indicates that there is no relationship between cloud cover 
and electrical load during the summer. Cloud cover has 
almost no effect on electricity consumption in Mosul 
during the summer. Based on the values of the correlation 
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where  𝐿 is the length of the time series, which is utilized 

to verify the hybrid method, yt represents the true data at 

time t, and 𝑦̂𝑡 denotes the forecasting data at the 

corresponding time.



coefficient, temperature and humidity are considered the 
fundamental factors that drive electrical loads during the 
summer season in Mosul in 2022. Wind speed and cloud 
cover have almost no effect on electricity consumption. 
These results highlight the importance of considering 
temperature and humidity when forecasting and managing 
electrical loads during the summer season in Mosul.  

This relationship between the variables can be 
illustrated in the following figures: Fig. 4 shows that high 
temperatures have a very strong and significant effect on 
the electrical load. This indicates that electrical energy 
consumption increases as temperatures rise. Fig. 5 shows 
a relationship between humidity and electrical load. High 
temperatures lead to increased humidity levels, which in 
turn contributes to electrical load consumption. According 
to the very weak value of the correlation coefficient, Fig. 
6 shows that wind speed does not affect load consumption 
during different periods of the summer season. Fig. 7 
shows that the relationship between cloud cover and 
electrical load is weak. 

 
Fig. 4. Correlation factor between temperature and electrical load. 

 
Fig. 5. Correlation factor between humidity and electrical load. 

 
Fig. 6. Correlation factor between wind speed and electrical load. 

Cloud cover does not have any significant impact on 
electricity consumption in Mosul during the summer. 

These figures reveal that high temperatures have the 
largest and most important impact on the electrical load 
during the summer of Mosul in 2022. Humidity also plays 
a role, although to a lesser extent. Wind speed and cloud 
cover do not affect electricity consumption. These results 
emphasize the importance of considering temperature and 
humidity factors when forecasting and managing electrical 
loads during the summer in Mosul. 

 
Fig. 7. Correlation factor between cloud cover and electrical load. 

TABLE II: CORRELATION FACTOR BETWEEN VARIABLES AND 
ELECTRICAL LOAD IN WINTER 

Variable Correlation coefficient value between 
variables and electrical load in winter 

Temperature 0.8305 
Humidity 0.2613 
Cloud Cover 0.05551 
Wind Speed 0.008299 

 
Table II presents the correlation coefficient values 

between electrical load variables and various weather 
factors for the winter season of the year 2023 in Mosul. 
These correlation coefficients offer valuable insights into 
the relationships between weather conditions and electrical 
load. The strong positive correlation coefficient of (0.8305) 
indicates a robust relationship between temperature and 
electrical load during the winter season. As temperature 
decreases, there is a tendency for electrical load to increase. 
This suggests that colder temperatures drive higher 
electricity consumption. A correlation coefficient of 
(0.2613) suggests a simple relationship between humidity 
and electrical load during the winter season. While this 
correlation is not as strong as temperature, it still signifies 
that humidity levels in the air have a moderate impact on 
electrical load. The small correlation coefficient of 
(0.05551) indicates a very weak relationship between 
cloud cover and electrical load during winter. Cloud cover 
appears to have only a modest effect on the electrical load 
during the winter. A correlation coefficient of (0.008299) 
indicates that there is no relationship between wind speed 
and the electrical load during the winter. Wind speed 
appears to have not a minimal impact on electrical load. 
These correlation coefficients reveal the relative effects of 
these weather factors on the electrical load during the 
winter. Temperature is the primary factor that has the most 
significant impact on load demand in an unquestionable 
manner. Although humidity affects load consumption, it 
plays a secondary role compared to temperature. Cloud 
cover and wind speed do not show significant relationships 
with the electrical load during this season. These findings 
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provide valuable insights for energy management and 
demand forecasting during the winter months in Mosul. 

 

 
Fig. 8. Correlation factor between temperature and electrical load. 

 
Fig. 9. Correlation factor between humidity and electrical load. 

 
Fig. 10. Correlation factor between cloud cover and electrical load. 

 
Fig. 11. Correlation factor between wind speed and electrical load. 

This relationship between the variables can be 
illustrated in the following figures: Fig. 8 shows that 
electrical energy consumption reaches its highest levels 
when the temperature drops. As temperatures decrease, 
there is a noticeable increase in electricity consumption. 
Temperature exhibits the highest value of the correlation 
coefficient and the strongest correlation with electrical 
load. Fig. 9 elucidates the effect of humidity on electrical 
load due to its direct relationship with temperature. As the 
weather becomes colder, humidity levels tend to rise, 
leading to increased electrical energy consumption. This 
indicates that humidity contributes to increased electricity 

use during the winter. Fig. 10, representing cloud cover, 
indicates a very weak relationship between cloud cover 
and electrical load. The effect of cloud cover on electrical 
energy consumption during the winter is minimal. Fig. 11, 
shows that a relationship between wind speed and 
electrical load is very weak. That is, Wind speed has little 
effect on electrical energy consumption during the winter. 
These results underscore the significance of temperature 
and humidity as the primary factors influencing electrical 
load during the winter in Mosul in 2023. Cloud cover and 
wind speed do not show significant relationships with the 
electrical load during this season. These findings 
emphasize the importance of considering temperature and 
humidity when forecasting and managing electrical loads 
during the winter in Mosul. 

B. Load Forecasting  
The second scenario involves the utilization of a 

MATLAB simulation environment to carry out the task. 
The input data for load forecasting is collected from the 
city of Mosul, covering the period from 2019 to 2023. This 
dataset includes various datasets, such as daily electricity 
demand, daily temperature, humidity, wind speed, cloud 
cover, and day type. The primary objective is to predict the 
electrical load data for the next day. To evaluate the 
accuracy of these predictions, the MAPE is employed as a 
measure of performance. 

Table III provides an assessment of the percentage error 
of forecast models for predicting short-term electrical load 
in Mosul on August 20, 2022. The mean absolute 
percentage error is being utilized to evaluate the accuracy 
of these methods. Two optimization algorithms, the WOA 
and the PSO, are employed to optimize the parameters of 
the LSSVM model used for prediction. The results indicate 
that both the LSSVM+WOA and LSSVM+PSO models 
outperform the basic LSSVM model in terms of the 
percentage error of short-term electrical load predictions. 
However, the LSSVM+PSO model stands out as the most 
accurate and least percentage error among the three models 
assessed. These models take into consideration 
meteorological factors such as temperature, humidity, 
wind speed, cloud cover, and the type of day (holiday or 
work). It is worth noting that the accuracy of the model 
results is influenced more by temperature and humidity 
than by wind speed and cloud cover. This observation 
aligns with the findings of the correlation factor analysis, 
which also emphasizes the substantial impact of 
temperature and humidity on short-term electrical load. 
Table IV provides a comprehensive assessment of the 
forecast model’s percentage error in predicting the 
conductor’s short-term electrical load for week during the 
summer of 2022. 

TABLE III: MAPE OF LOAD FORECASTING FOR SUMMER AUGUST 20, 
2022 

Method 

Factors 

Temperature 
with humidity 

Temperature, 
humidity, and 

wind speed 

Temperature , 
humidity, and 

cloud cover 
LSSVM+PSO 0.48% 0.50% 1.65% 

LSSVM+WOA 0.66% 0.74% 1.85% 
LSSVM 1.41% 1.77% 2.15% 
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TABLE IV: MEAN ABSOLUTE PERCENTAGE ERROR OF LOAD 
FORECASTING MODELS FOR MOSUL CITY IN SUMMER 2022 

City Season Date 
MAPE 

LSSVM 
(base) 

LSSVM 
+PSO 

LSSVM 
+WOA 

Mosul Summer 

8/1/2022 3.15% 0.86% 0.88% 
8/2/2022 3.88% 1.50% 1.62% 
8/3/2022 0.46% 0.30% 0.33% 
8/4/2022 4.53% 2.92% 2.94% 
8/5/2022 3.55% 0.64% 1.00% 
8/6/2022 2.43% 0.30% 0.37% 
8/7/2022 5.99%    1.23%   1.25% 

 
The relationship between the actual values and the real 

values can be illustrated in the following figures: Fig. 12, 
Fig. 13, and Fig. 14 show the closeness of the results 
obtained from the models used to predict short-term 
electrical loads under the influence of weather and type of 
day (holiday or working days), presented in the form of 
curves. Among these models, the curve corresponding to 
the LSSVM+PSO model is the closest to the actual values 
of electrical loads, followed by the LSSVM+WOA model, 
which is close to the actual values of electrical loads. These 
curves illustrate the percentage error of the model and 
depict the peak times of demand on the electric load, which 
occur in the middle and at the end of the day. These figures 
confirm that the LSSVM+PSO model is more accurate and 
reliable for short-term electrical load prediction than the 
LSSVM+WOA and basic LSSVM models. This suggests 
that the integration of the PSO algorithm into the LSSVM 
model enhances its predictive capabilities. 

 
Fig. 12. Electrical load forecast for August 20, 2022 using temperature 

and humidity. 

 
Fig. 13. Electrical load forecast for August 20, 2022 using temperature, 

humidity and wind speed. 

 
Fig. 14. Electrical load forecast for August 20, 2022 using temperature, 

humidity and cloud cover. 

 
Fig. 15. Optimization convergence for load forecasting on 8/1/2022. 

 
Fig. 16. Optimization convergence for load forecasting on 8/7/2022. 

Additionally, the convergence of the optimization 
algorithms in Fig. 15, and Fig. 16 provide further insights 
into their performance. These figures depict how the 
algorithms converge towards optimal solutions over the 
first 50 iterations. By analyzing these convergence figures 
alongside the percentage error assessments presented in 
Table IV, can gain a comprehensive understanding of the 
effectiveness and efficiency of each integrated method in 
predicting short-term electrical load accurately. 
Furthermore, convergence figures offer valuable 
visualizations to compare the convergence speed and 
efficiency of the PSO, and the WOA when integrated with 
the LSSVM model to reach optimal solutions. Fig. 15 and 
Fig. 16 show that the LSSVM+PSO model has faster 
convergence than the LSSVM+WOA model to reach 
optimal solutions. 

Table V assesses the percentage error of error between 
the predicted values and the actual values for short-term 
electrical load forecasts for January 23, 2023, in Mosul city. 
The MAPE is employed to gauge the accuracy of these 
methods. These results demonstrate that integrating 
optimization algorithms, specifically the PSO and the 
WOA algorithms, with the LSSVM model enhances the 
accuracy of short-term electrical load predictions 
compared to using the LSSVM model. Among the three 
models evaluated, the LSSVM+PSO model exhibits the 
lowest percentage error, followed by the LSSVM+WOA 
model. This improvement in accuracy is especially notable 
when considering the influence of meteorological factors 
such as temperature, humidity, and the type of day (holiday 
or work) compared to the influence of wind speed and 
cloud cover. This finding aligns with the results of the 
correlation analysis, which highlights the significant 
impact of temperature and humidity on short-term 
electrical load. The results indicate that the LSSVM+PSO 
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model achieves the lowest error rate, delivers the most 
precise predictions, and closely approximates the actual 
values of short-term electrical load. This underscores the 

effectiveness of integrating PSO optimization into the 
LSSVM model for enhancing the accuracy of load 
forecasts in Mosul city.  

Method 
Factors 

Temperature with 
humidity 

Temperature , humidity, and 
cloud cover 

Temperature, humidity, and 
wind speed 

LSSVM+PSO 0.30% 0.84% 1.34% 
LSSVM+WOA 0.52% 0.86% 1.62% 

LSSVM 1.24% 1.82% 3.15% 

City Season Date MAPE 
LSSVM (base) LSSVM +PSO LSSVM+WOA 

Mosul Winter 

1/1/2023 4.77% 0.40% 0.55% 
1/2/2023 6.99% 3.33% 3.36% 
1/3/2023 2.79% 0.79% 0.86% 
1/4/2023 5.21% 0.76% 0.91% 
1/5/2023 3.43% 1.37% 1.38% 
1/6/2023 1.27% 0.55% 0.56% 
1/7/2023 8.17% 4.77% 4.84% 

 
Table VI provides a comprehensive assessment of the 

percentage between the predicted values and the actual 
values of the forecast model in predicting the short-term 
electrical load of the conductor for a week during the 
winter of 2023. 

 
Fig. 17. Electrical load forecasts for January 23, 2023 using 

temperatures and humidity. 

 
Fig. 18. Electrical load forecasts for January 23, 2023 temperature, 

humidity and cloud cover. 

The relationship between the actual values and the real 
values can be illustrated in the following figures: Fig. 17, 
Fig. 18, and Fig. 19 illustrate the proximity of the results 
obtained from the models used for short-term load 
prediction, taking into account the influence of weather 
and type of day (holiday or working days). These figures 

depict the curves generated by the models, with a 
particular focus on the LSSVM+PSO model. It is worth 
noting that the curve corresponding to the LSSVM+PSO 
model closely aligns with the actual values of electrical 
loads, indicating a high level of accuracy and reliability in 
short-term electrical load prediction. Following closely 
behind is the LSSVM+WOA model curve, which also 
exhibits a close alignment with the actual load values. In 
contrast, the curve associated with the LSSVM models 
deviates more from the actual load values, confirming the 
superior performance of the LSSVM+PSO model in 
capturing load patterns and providing accurate predictions. 

 
Fig. 19. Electrical load forecasts for January 23, 2023 temperature, 

humidity and wind speed. 

Additionally, the convergence of the optimization 
algorithms in Fig. 20 and Fig. 21 provide further insights 
into their performance. These figures depict how the 
algorithms converge towards optimal solutions over the 
first 50 iterations. By analyzing these convergence figures 
alongside the percentage error assessments presented in 
Table VI, can gain a comprehensive understanding of the 
effectiveness and efficiency of each integrated method in 
predicting short-term electrical load accurately. 
Furthermore, convergence figures offer valuable 
visualizations to compare the convergence speed and 
efficiency of optimization algorithms the PSO, and the 
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WOA when integrated with the LSSVM model to reach 
optimal solutions. Fig. 20 and Fig. 21 show that the 
LSSVM+PSO model has faster convergence than the 
LSSVM+WOA model to reach optimal solutions. 

 
Fig. 20. Optimization convergence for load forecasting on 1/1/2023. 

 
Fig. 21. Optimization convergence for load forecasting on 1/7/2023. 

V. CONCLUSIONS 

The work presents two distinct scenarios. In the first 
scenario, it focuses on analyzing weather factors and their 
impact on electrical load using correlation coefficients. In 
the second scenario, the focus is on enhancing the accuracy 
of short-term energy consumption forecasts using the 
LSSVM model. Historical load data is obtained from the 
Iraqi National Dispatch Center, while meteorological data 
is sourced from the Iraqi Meteorological Organization and 
Seismology in the city of Mosul. To improve the LSSVM 
model’s performance, two different optimization 
algorithms are employed, namely the PSO and the WOA. 
The research findings indicate that the enhanced LSSVM 
model using the PSO algorithm outperforms the WOA 
algorithm, albeit by a slight margin, in providing reliable 
predictions of electrical loads. The work concludes that 
temperature and humidity, along with the type of day, have 
a more significant and positive impact on electrical load 
forecasting compared to wind speed and cloud cover. 
Furthermore, it is noted that both the LSSVM+PSO model 
and the LSSVM+WOA model achieve better accuracy in 
electrical load prediction results than the basic LSSVM 
model. Based on these results, it is inferred that the 
proposed method, particularly the LSSVM+PSO model, 
can be effectively utilized for accurate and reliable load 
prediction, while according to execution time, the 
LSSVM+PSO model takes a little longer than the 

LSSVM+WOA model. Future work also suggests the 
possibility of extending this method by incorporating 
additional factors to further enhance its predictive 
capabilities. 
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