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Abstract—As wireless networks continue to evolve with the 

emergence of sixth-generation networks and beyond, OFDM 

technology is expected to be an essential system component 

for providing reliable connectivity in an increasingly complex 

environment. Its high spectrum efficiency, efficiency against 

impulse noise, and resilience against frequency-selective 

multipath fading channels make it an invaluable component. 

Although OFDM technology has various capabilities and uses 

and is widely used, it has some issues and challenges, and one 

of these challenges is Carrier Frequency Offset (CFO). The 

CFO destroys orthogonality between subcarriers and causes 

subcarrier misalignment at the receiver, resulting in Inter-

Carrier Interference (ICI) in OFDM systems. This 

interference impairs system performance by introducing 

errors and degrading signal-to-noise ratios (SNR). In this 

paper, a novel approach to estimate the CFO in OFDM 

systems via Feedforward Neural Network (FNN) has been 

proposed. The architecture is precisely designed for 

regression tasks, with a focus on accurately estimating the 

continuous parameter φ based on the input features. The 

multiple hidden layers facilitate the extraction of intricate 

patterns, while careful training options ensure efficient 

optimization and monitoring of the training process. The 

performance of the proposed FNN algorithm is assessed and 

compared with other subspace-based methods, ESPRIT, 

PM(MUSIC), and QR. Remarkably, the results demonstrate 

that the FNN algorithm consistently outperforms all 

subspace methods, especially in low SNR scenarios. 

Index Terms—6G, blind estimation, Carrier Frequency 

Offset (CFO), dataset, Deep Learning (DL), Inter-Carrier 

Interference (ICI), loss function, Machine Learning (ML), 

Feedforward Neural Network (FNN), OFDM, training 

I. INTRODUCTION 

With the tremendous growth of wireless and mobile 

services and the revolution in artificial intelligence 

applications, the next generations of wireless networks are 

expected to offer low latency transmission, higher data 

rates, higher bandwidth efficiency, energy-efficient 

transmission, and improved service quality. Orthogonal 

Frequency Division Multiplexing (OFDM) has been the 

most preferred multicarrier modulation technique for most 

standards [1], including 802.11, Long-Term Evolution 

(LTE), and Fifth Generation (5G) cellular networks [2] due 

to its benefits and advantages, such as high spectrum 

efficiency, efficiency against impulse noise, and resilience 

against frequency-selective multipath fading channels [3]. 

As we look toward the future of wireless networks with the 

emergence of Sixth Generation (6G) networks [4, 5] and 

beyond, OFDM technology is expected to play a crucial 

role in providing reliable connectivity in an increasingly 

complex environment [6]. Although the basic 

requirements for 6G technology are still under research 

and development, the OFDM technology, with its 

adaptability and versatility, makes it suitable for fulfilling 

the needs of many emerging applications as 3D 

communications, the Internet of Things (IoT), and 

Artificial Intelligence-Based (AI) applications. Although 

OFDM technology has various capabilities and uses and is 

widely used, it has some issues and challenges. Some of 

these challenges include high Peak-to-Average Power 

Ratio (PAPR), Inter-Symbol Interference (ISI), and 

Carrier Frequency Offset (CFO) [7, 8]. High PAPR in 

OFDM systems results in low power efficiency. Complex 

signal processing techniques such as amplitude clipping 

and filtering can be employed to decrease the impact of 

PAPR in OFDM systems; however, these sequences 

increase cost and system complexity. Despite OFDM's 

capability to reduce ISI within each OFDM subcarrier, ISI 

may still occur due to multipath propagation in wireless 

networks.  
Doppler shift of the mobile channel and inconsistency 

between the transmitter and receiver are the two main 
causes of CFO [9]. The CFO destroys orthogonality among 
subcarriers leading to subcarrier misalignment at the 
receiver, resulting in Inter-Carrier Interference (ICI) in 
OFDM systems. This interference impairs system 
performance by introducing errors and degrading signal-
to-noise ratios, especially in situations with high mobility 
or frequency-selective fading channels. Over the last two 
decades, several techniques have been developed to 
mitigate the impact of CFO on OFDM [9–14]. These 
methods are divided into three categories: pilot-aided 
schemes, semi-blind, and blind ones. The paper in [9] 
addresses blind CFO estimation for Multi-Input, Multi-
Output (MIMO)-OFDM systems, which is crucial for 
optimal system performance. The proposed approach 
leverages the structure of covariance matrices for constant 
modulus signals, enabling CFO estimation without the 
need for pilot or training symbols. 

A subspace-based semi-blind CFO estimation method 
was proposed in [10], where a multi-antenna redundancy 
is exploited at the receiver. The proposed method requires 
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that the antennas number at the receiver to be greater than 
those at the transmitter [10]. 

The cyclic Prefix (CP) preceding OFDM symbols 

contains No information and can be utilized for CFO 

estimation for OFDM operating under multipath channels, 

as presented in [11]. This innovative approach effectively 

reduces the estimation's theoretical Mean Squared Error 

(MSE) without any extra pilot symbols. In [12], a 

technique was suggested for estimating the frequency 

offset in the OFDM system by constraining the criteria 

function for covariance fitting. Based on the covariance 

fitting criteria between two neighboring symbols, a cost 

function was generated assuming that the channel's 

influence over the OFDM symbols is the same across two 

close sub-carriers. The results demonstrated that this 

approach is less reliant on the channel conditions and 

provides greater precision. 

Many existing CFO estimation techniques currently in 

use are limited to certain Carrier Assignment Schemes 

(CAS) and cannot be used with others. However, the paper 

in [13] presented a blind CFO estimation for uplink 

multiple access OFDM systems by exploiting the virtual 

carrier (unused subchannels) for CFO estimation. 

Moreover, the proposed scheme requires a single OFDM 

block to perform the CFO estimation, thereby reducing the 

system complexity. 

An estimation bound for frequency offset estimator in 
OFDM systems with single relay networks over multipath 
receptions was presented [14]. In multipath fading 
channels, it is necessary to estimate the frequency offset of 
the source-relay and relay-destination links independently, 
unlike flat fading channels where the CFOs of two hops 
can be combined as a single estimation parameter. The 
Zhao and Chen [15] proposed a blind frequency offset 
estimation based on signal characteristics for OFDM under 
a doubly selective fading channel. According to their 
results, this method successfully resolved the CFO and 
compensated for its impact on the OFDM system. 
However, the main weakness of this approach was its 
computational complexity and rate of convergence 
compared to data-aided methods [16]. A joint CFO and 
channel estimation problem for OFDM/OQAM systems 
over an Additive White Gaussian Noise (AWGN) channel 
was presented [17]. The first step involves estimating the 
carrier phase offset using an unconditional machine 
learning estimator. Then, a data-aided approach based on 
the preamble was used to improve carrier frequency offset 
estimation accuracy, and the received signal was used to 
estimate the channel impulse response.  

Huang et al. [18] presented a frequency domain pilot 

symbol-based data-assisted CFO estimation method by 

leveraging pilot symbols to precisely estimate and 

compensate for CFO in constant-envelope OFDM satellite 

systems. The pilot symbol-based CFO estimator can obtain 

an extensive estimation range with a small pilot overhead. 

Furthermore, Huang et al. [18] explored the impact of pilot 

symbols on estimation accuracy. A sparse recovery-based 

CFO blind estimation scheme for an uplink OFDMA 

system was proposed in [18]. This scheme utilized sparse 

recovery in OFDMA data to optimize CFO estimation with 

high resolution. Applying noise covariances matrix 

structure and asymptotic distribution of sampling errors, 

the estimator mitigated sampling errors and background 

noise. The regularization factor employed by the estimator 

was obtained to manage the trade-off between data fitting 

error and the sparsity of the solution. 

Using the pilot grid that is available for channel state 

information (CSI) estimation, an iterative Maximum 

Likelihood (ML) CFO method in frequency domain 

produces ML and Least Square (LS) iterative estimators 

[19]. 

Utilizing a limited number of noisy observations of the 

received OFDM signal, Eslahi et al. [20] proposed a 

subspace CFO estimation scheme. The linear prediction 

property of a complex sinusoidal was used to solve a 

quadratic eigenvalue problem. 

Raboh et al. [21, 22] compared various CFO estimate 

schemes in OFDM systems. Also, examined the training 

symbol along with the Cyclic Prefix (CP) methods in the 

time domain, while the training symbol and the pilot 

methods were investigated in the frequency domain. The 

comparison criteria were the MSE according to their 

results, the CFO estimate methods in the frequency domain 

outperform those in the time domain in terms of MSE. 

Furthermore, it was shown that the performance of the 

pilot tone approach surpasses the cyclic prefix method and 

a two identical blocks training sequence method. 

In recent years, Artificial Intelligence (AI) technologies 

have shown remarkable potential in wireless networks for 

5G and beyond. Research has shown two possible 

applications for artificial intelligence in communications 

networks. The first is to improve the performance of 

functions within the wireless network, such as signal 

detection, error-correction, modulation, demodulation, and 

channel estimation. The second is to replace function 

modules with an intelligent system, creating an end-to-end 

(E2E) communication system that improves transmission 

efficiency between the ends [23]. 

The upcoming 6th generation technologies are expected 

to handle high transmission rate wireless communication 

networks with massive data and low latency 

communications. OFDM is presumed to have a substantial 

impact on 6G and beyond due to its versatility in 

integrating with other technologies [4]. AI techniques like 

Machine Learning (ML) and Deep Learning (DL) are 

inevitable in OFDM-based communication networks. 

Research has indicated that applying ML to OFDM 

systems can improve performance compared to signal 

processing-based systems. DL algorithms can be 

employed in OFDM systems to estimate the channel 

coefficient for equalization purposes, as outlined in [24]. 

One major issue in OFDM systems is the large PAPR in 

the transmitted OFDM signal, which reduces the OFDM 

system's power efficiency. In [25], an OFDM system with 

a DL-based autoencoder was proposed to reduce the PAPR; 

the proposed method outperforms conventional PAPR 

reduction schemes such as partial transmit scheme and 

clipping methods [25, 26]. 

Various artificial intelligence techniques have recently 

been adopted to address the challenge of carrier frequency 

offset in OFDM-based wireless networks [27–30]. A 

supervised DL-based CFO estimation was proposed in 
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[27], where four different neural networks (NN) were 

considered: a convolutional NN, a feedforward NN, a 

residual NN, and a recurrent NN. Findings demonstrated 

that NN learning can be enhanced by utilizing quantized 

training datasets with low Signal-to-Noise Ratio (SNR). A 

Deep Neural Network (DNN) with three layers, an input 

linear layer, one hidden layer, and one output layer, was 

proposed in [28] to handle CFO in OFDMA systems. 

Ninkovic et al. in [29] proposed CFO estimation and 

packet detection for IEEE 802.11 ah standard using 

machine learning. The Recurrent Neural Network (RNN) 

RNNs were shown to be the most influential architecture 

for CFO estimate, matching the accuracy of conventional 

techniques at low to medium SNRs. The performance of 

the proposed CAD method in [30] shows performance 

enhancement under low SNR while it has a steady-state 

MSE performance over high SNR. Nevertheless, their 

complexity is consistently lower than that of conventional 

approaches. Hussien et al. [31] proposed an ML-based 

CFO estimation technique. The training of the NN utilizes 

datasets taken from the received primary synchronization 

signal and secondary synchronization signal. The 

performance of the proposed CAD method in [32] shows 

performance enhancement under low SNR while it has a 

steady-state MSE performance over high SNR. 

CFO estimation in [33] was achieved by acquiring 

signal characteristics from in-phase and quadrature signal 

components. These features were then used to train a 

residual network (ResNet). Various modulation schemes 

were used in the training procedure to enable the model to 

handle new signals effectively. 

Blind CFO-OFDM estimator introduced, using 

Propagator Method (PM) with Multiple Signal 

Classification (MUSIC) [34]. Matrix Pencil (MP) was 

suggested [35, 36] as another blind CFO estimator based, 

where a closed-form solution of the generalized eigenvalue 

problem was solved by Rank Revealing QR factorization 

(RRQR). 

This paper presents a novel deep learning-based carrier 

frequency offset estimation approach. Specifically, a 

Feedforward Neural Network (FFNN) consisting of input, 

hidden, and output layers is utilized for deep learning 

training purposes. In the proposed method, we utilized a P 

subcarriers raw data consisting solely of received vectors 

from used carriers only, without the need for pilot symbols. 

The collected dataset underwent a preprocessing 

procedure to guarantee consistency and simplify model 

training. 

The structure of the paper is as follows: The problem 

formulation is described in Section II. Section III describes 

the suggested model’s evolution in depth. Discussions and 

simulation results are given in Section IV. The article is 

lastly concluded in Section V. 

II. PROBLEM FORMULATION 

We study an OFDM system that utilizes pairs of inverse 

discrete Fourier transform (IDFT) for modulation and 

discrete Fourier transform (DFT) for demodulation, each 

of size N, as shown in Fig. 1.  

 

 

To avoid aliasing effects at the edges of the transmission 

spectrum, Only P subcarriers are utilized among all N 

components, identified as Used Carriers (UC). Let the kth 

UC block to be transmitted sP(k) represented by a QPSK 

or QAM data symbol as 

𝐬𝑃(𝑘) = [𝑠0(𝑘) 𝑠1(𝑘) … 𝑠𝑃−1(𝑘)]
𝑇                   (1) 

where T denotes transpose. The vector 𝐬𝑃 of length P is 

extended to the vector 𝐬 of length N by padding N-P zeros, 

to accommodate the Virtual Carrier (VC) or unused 

carriers, ensuring avoidance of aliasing problems at the 

receiver: 

𝐬(𝑘) = [𝑠0(𝑘) 𝑠1(𝑘) …  𝑠𝑃−1(𝑘)⏟              
𝑃

, 0 0 …  0⏟    
𝑁−𝑃

]

𝑇

            (2) 

The N samples of the IDFT output with 𝐬(𝑘) as input 

are expressed as follows: 

{
𝐱(𝑘) ≜𝐖𝐬(𝑘) = 𝐖𝑃𝐬𝑃(𝑘)

𝐱 = {𝑥0  𝑥1  … 𝑥𝑁−1}
                         (3) 

where 𝐖𝑃  contains the first P columns of NN IDFT 

matrix W as: 

𝐖

=
1

√𝑁

[
 
 
 
 
𝑊0.0       
𝑊0.1       
𝑊0.2       

⋮
𝑊0.(𝑁−1)

𝑊1.0

𝑊1.1

𝑊1.2

⋮
𝑊1.(𝑁−1)

𝑊2.0

𝑊2.1

𝑊2.2

⋮
𝑊2.(𝑁−1)

…
…
…
⋮
…

𝑊(𝑁−1).0 

𝑊(𝑁−1).1 

𝑊(𝑁−1).2

⋮
𝑊(𝑁−1).(𝑁−1) ]

 
 
 
 

 

where 𝑊 = 𝑒𝑗𝜔. Cyclic Prefix (CP) symbols are appended 

in front of each frame to mitigate Inter-Symbol-

Interference (ISI) between consecutive OFDM symbols. 

Consequently, the OFDM system is expressed as: 

𝐱 = {𝑥𝑁−𝐺  … 𝑥𝑁−1 𝑥0 𝑥1  … 𝑥𝑁−1}               (4) 

Apply IDFT 

𝐱 = [𝑥0, 𝑥1……𝑥𝑁−1] 

Add N-P Virtual Carrier (VC) 

𝐬(𝑘) = [𝑠0(𝑘) 𝑠1(𝑘)…… 𝑠𝑃−1(𝑘)⏟                
𝑃

, 0,0, … ,0⏟    
𝑁−𝑃

]

𝑇

 

P Transmitted Symbols 

𝐬𝑃(𝑘) = [𝑠0(𝑘) 𝑠1(𝑘)… 𝑠𝑃−1(𝑘)]
𝑇 

Add CP 

x ={𝑥𝑁−𝐺 , … 𝑥𝑁−1, 𝑥0, 𝑥1…𝑥𝑁−1} 

The channel output with CFO and AWGN 

𝐲(𝑘) ∶= [𝑦0(𝑘) 𝑦1(𝑘)…𝑦𝑁−1(𝑘)]
𝑇 

Blind CFO/DNN Based Estimator  
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Let the channel impulse response ℎ(𝑙), 𝑙 = 0,1, … 𝐿𝑐 −
1, 𝐿𝑐 < 𝐺 where 𝐿𝑐 is the length of the channel. Inside the 

kth block only the guard segment of the signal will be 

distorted. At the receiver end, removing the CP symbols 

transforms the received sequence into the circular 

convolution of the transmitted sequence with channel 

impulse response. The channel output based on the used 

subcarriers for the kth block under AWGN and the 

existence of a CFO is given by:  

𝐲(𝑘) = [𝑦0(𝑘) 𝑦1(𝑘)……𝑦𝑁−1(𝑘)]
𝑇 

= 𝐄𝐖𝑃𝐇𝐬(𝑘)𝑒
𝑗(𝑘−1)𝜑(𝑁+𝐺) + 𝐳(𝑘)      (5) 

where 

𝐄 = diag(1, 𝑒𝑗𝜑, … , 𝑒𝑗(𝑁−1)𝜑) 

and 𝜑  is the carrier offset, 𝐇  is the frequency domain 

channel matrix representation and given by: 

𝐇 = diag[𝐻(0), 𝐻(1), … , 𝐻(𝑃 − 1)] 

The channel frequency response is represented as: 

𝐻(𝑖) = ∑ ℎ(𝑙)𝜔−𝑖𝑙
𝐿𝑐−1
𝑙=0                      (6) 

To sustain orthogonality among the sub-channel carriers 

and to mitigate Inter-Carrier Interference (ICI), the matrix 

E needs estimation and compensation before applying the 

Discrete Fourier Transform (DFT) to (5). The current 

objective is to propose a Deep Neural Network (DNN) to 

estimate φ, given that the K received noisy data blocks are 

only the sole available measurements, assuming that φ is 

constant during the K blocks. Having tackled the blind 

CFO estimation problem previously, we’ll maintain the 

identical setup described in [31]. Our goal is to 

demonstrate the effectiveness of the proposed method 

relative to various reference subspace-based methods. 

III. DEVELOPMENT OF ML METHOD 

The K blocks of the received data are collected in matrix 

Y of size NK: 

𝐘 = [𝐲(1) 𝐲(2) …  𝐲(𝐾)] + 𝐙                     (7) 

where the kth block of the received signal in (3) is given 

by 𝐲(𝑘) = [𝑦0(𝑘) 𝑦1(𝑘)…𝑦𝑁−1(𝑘)]
𝑇 , and Z is the 

corresponding additive white Gaussian noise matrix. The 

real matrix YY is formulated by concatenating the real and 

imaginary parts of Y as:  

YY=[Real(Y); imaginary(Y)]                (8) 

Then the real matrix YY reshaped to have 2NK elements 

in the input features vector to the FNN. 

Recently, there has been a expanding interest in 

leveraging machine learning models to replace 

conventional CFO estimators. These models can be trained 

on extensive datasets of CFO measurements, enabling 

them to provide more precise estimates of the Carrier 

Frequency Offset (CFO) compared to traditional statistical 

models. 

Utilizing a machine learning model in lieu of a 

conventional CFO estimator offers several potential 

advantages. Firstly, machine learning models tend to 

exhibit superior accuracy, particularly in scenarios 

involving intricate or rapidly evolving CFOs. Secondly, 

these models boast greater adaptability, allowing them to 

learn and adjust to changes in the CFO dynamics over time. 

A. Datasets Generation 

In the foundational phase of the research, a synthetic 

dataset closely emulating the complexities of actual CFO 

scenarios is generated. CFO values are randomly sampled 

from a uniform distribution spanning zero to one, while the 

channel gain is assumed to follow a random complex 

normal distribution with 10 taps, as described in [30]. A 

total of twenty thousand received block signals, each of 

size 2NK features as described in (8), are generated. 

B. Dataset Preprocessing 

Following generation, the dataset underwent 

preprocessing procedures to ensure consistency and 

facilitate model training. Subsequently, the dataset was 

partitioned into training (75%) and testing (25%) subsets, 

as detailed in [30]. 

C. Neural Network Architecture 

A feedforward neural network, a form of artificial neural 

network, operates by transmitting information in a singular 

direction—forward—starting from the input layer, passing 

through the hidden layers, and concluding at the output 

layer. Each layer is comprised of nodes, also known as 

neurons, with interconnecting weights governing the 

connections between nodes. Throughout the training 

process, these weights are iteratively modified to reduce 

the disparity between the predicted output and the actual 

output. The neural network as shown in Fig. 2 begins with 

an input layer created using the feature Input Layer 

function, acting as the gateway for input data into the 

network. This layer is designed to accommodate the 

varying number of features present in the input dataset, 

where each input sample has a size of 2NK. Following the 

input layer, the architecture incorporates four hidden 

layers, each consisting of fully connected neurons. The 

first hidden layer comprises 256 neurons, serving as an 

initial processing stage for the input data. Subsequent 

hidden layers progressively reduce the number of neurons, 

with 128, 64, and 32 neurons in the second, third, and 

fourth layers, respectively. Rectified Linear Unit (ReLU) 

activation functions are applied after each hidden layer, 

facilitating the introduction of non-linearities, and 

enabling the network to capture intricate patterns within 

the data. The output layer of the network is composed of a 

single neuron, tasked with producing the final estimation 

of the parameter φ. Since the objective is regression, no 

activation function is applied to the output neuron. Instead, 

it outputs continuous values that represent φ directly. 
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Fig. 2. Feedforward Neural Network (FNN) architecture, the diagram 

automatically generated by ChatUML. 

D. Neural Network Training Process 

The training process utilizes the Adam optimizer, a 
robust algorithm suitable for optimizing deep neural 
networks. The initial learning rate is set to 3e-4, 
determining the magnitude of weight updates during 
training. Training progresses through a maximum of 50 
epochs, with the dataset shuffled before data, comprising 
input features and corresponding labels, is utilized to 
assess the network's performance at regular intervals, with 
validation performed every 8 mini-batches. If validation 
performance fails to improve for 5 consecutive epochs, 
training may halt prematurely to prevent overfitting. These 
parameters collectively optimize the neural network 
training process, ensuring effective learning and 
performance evaluation while mitigating the risk of 
overfitting. each epoch to prevent the network from 
memorizing sample order. Each training iteration involves 
mini batches containing 32 samples, enhancing 
computational efficiency. Training Loss curves and 
accuracy curves is generated in Fig. 3 for different frame 
sizes. In various cases, the loss curves for both training and 
validation data exhibit a decreasing trend as the number of 
iterations increases during the neural network training 
process. This indicates that the model is effectively 
learning from the training data, as evidenced by the 
decreasing training loss. Additionally, the decreasing 
validation loss suggests that the model's performance is 
improving not only on the training set but also on unseen 
data, indicating generalization capability. Consequently, 
the observed trend signifies a successful training process, 
where the neural network is iteratively adjusting its 
parameters to better capture the underlying patterns in the 

data, ultimately leading to improved performance on both 
the training and validation sets. 

  
(a) 

 
(b) 

 
(c) 

Fig.  Training and validation loss curves for (a) K=1, (b) K=5, and (c) 

K=10. 

IV. SIMULATION RESULTS 

In the conducted simulations, the proposed method was 

tested, validated, and compared with reference methods 

[28–30]. Same experiment setup for all methods is 

assumed. An OFDM system characterized by 64 carriers. 

Among these carriers, 40 were allocated as used 

subcarriers, while the remaining 24 were designated as 

virtual carriers. The transmitted symbols were drawn from 

a QPSK constellation, ensuring equiprobable distribution. 

The Cyclic Prefix (CP) length was set to eleven symbols 

to accommodate channel delay spread. To simulate real-

world conditions accurately, frequency offset φ was drawn 

from a uniform random distribution. These parameters 

were carefully chosen to mimic the complexities of 

practical OFDM systems, allowing us to assess the 

effectiveness and robustness of the proposed method under 

practical conditions. The experiment was conducted in an 

AWGN environment, employing a total of 10,000 

independent Monte Carlo realizations. The estimator 

performance was evaluated using the normalized MSE as 

a unified performance metric for all shown algorithms and 

is given by 

MSE =
1

𝑁𝑡
∑ (𝜑 − 𝜑�̂�)

2𝑁𝑡
𝑖=1                (9) 
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Fig. 4 illustrates the normalized MSE of the CFO, 

plotted against the signal-to-noise ratio (SNR) for an 

assumed number of blocks, K=10. The FNN algorithm 

proposed in this study is evaluated alongside other 

subspace-based methods such as ESPRIT, PM(MUSIC), 

and QR [34–36]. At an SNR of zero dB, the MSE of the 

DNN is 2.25375103, and of 0.12298 to 0.3489 of the 

other methods, marking a one hundredfold enhancement. 

Conversely, at higher SNR levels such as 20 dB, the FNN 

achieves a performance of 1.73918103 compared to the 

next best reference method PM (MUSIC) as 2.1440510

3. Remarkably, the performance of the proposed FNN 

algorithm outperforms all subspace methods, particularly 

in low SNR scenarios [37, 38]. 

  
Fig. 4. MSE vs. SNR curves for K=10. 

V. CONCLUSION 

A novel Feedforward Neural Network (FNN) algorithm 

has been proposed for estimating the Carrier Frequency 

Offset (CFO) in Orthogonal Frequency Division 

Multiplexing (OFDM) systems. The architecture is 

carefully designed for regression tasks, with a focus on 

accurately estimating the continuous parameter φ based on 

the input features. The multiple hidden layers facilitate the 

extraction of intricate patterns, while careful training 

options ensure efficient optimization and monitoring of the 

training process. The performance of the proposed FNN 

algorithm is assessed with other subspace-based methods, 

ESPRIT, PM(MUSIC), and QR. Remarkably, the results 

demonstrate that the parameter estimation using FNN 

algorithm consistently outperforms all subspace methods, 

especially in low SNR scenarios. 
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